Supporting Information

Cobalt/Nitrogen co-Doped Porous Carbon Nanosheets as Highly Efficient Catalysts for Oxygen Reduction Reaction in Both Basic and Acidic Media

Zongsheng Hou,^a Chongqing Yang, ^a Wenbei Zhang, ^a Chenbao Lu, ^a Fan Zhang, ^{*a} Xiaodong Zhuang, ^{*a,b}

^a School of Chemistry and Chemical Engineering, State Key Laboratoryof Metal Matrix Composites,
 Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong
 University

Dongchuan Road 800, 200240 Shanghai, P. R. China

^b Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry,
 Technische Universität Dresden

Mommsenstrasse 4, 01062 Dresden, Germany

[‡] Zongsheng Hou and Chongqing Yang contributed equally to this work

* Corresponding Author

Prof. Fan Zhang E-mail: fan-zhang@sjtu.edu.cn;

Prof. Xiaodong Zhuang E-mail: zhuang@sjtu.edu.cn

Figure S1. XRD analysis of the GMC-CoPor-800

Table S1 The content of Co and N element in the composite GMP-CoPor and CMP-

Sample	Name	%At Conc	N/Co ratio
GMP-CoPor	N 1s	3.58	6 1
	Co 2p	0.59	0.1
GMP-CoPor-700	N 1s	3.13	7.5
	Co 2p	0.42	
GMP-CoPor-800	N 1s	2.50	7.1
	Co 2p	0.35	
GMP-CoPor-900	N 1s	1.73	9.1
	Co 2p	0.19	

CoPor-T (T=700, 800 and 900)

Materials	Half-wave Potential (V vs Ag/AgCl)	Diffusion-limited	
		Current Density	Reference
		(mA cm ⁻²)	
Co/N co-doped porous carbon nanosheets	-0.147	4.64	This Work
Co-N doping of carbon/graphene sheets	-0.18	5.21 (-0.3 V)	[1]
Fe-N co-doped mesoporous 2D Carbon	-0.156	5.64 (-0.4 V)	[2]
Co-N co-doped WC Carbide	-0.194	4.8 (-0.4 V)	[3]
Co-N co-doped graphene-like carbon nanosheets	-0.151	~5.7	[4]
N-doped graphene aerogel supported Co nanoparticles	~-0.25	4.5	[5]
Co and N co-doped carbon	-0.115	~4.6	[6]
Co and P co-doped reduced graphene	~-0.19	~-4.9 (-0.4 V)	[7]
Fe, Co, N-doped 3D porous carbon foams	~-0.17	~4.3 (-0.4 V)	[8]

Table S2ORR performance of GMC-CoPor-700 and some recently reported Metal/Nco-doped carbon materials. All the electrocatalysts were tested in 0.1M KOH

Materials	Half-wave Potential (V vs Ag/AgCl)	Diffusion-limited	
		Current Density	Reference
		(mA cm ⁻²)	
Co/N co-doped porous	0.54	5.10	This Work
Fa N doned vertically			
aligned carbon	0.54	-6	[0]
nanotubes catalysts	0.34		
Fe-polypyrrole			
derived carbon	0.50	5.7	[10]
electrocatalysts			
Cobalt tripyridyl			
triazine derived Co-N	~0.4	~4.3	[11]
doped carbon			
Fe, Co-N doping of			
carbon/graphene	0.63	~4.8	[1]
sheets			
Mesoporous Co-N co-			
doped carbon derived	0.52 ± 0.02	4.5	[12]
from VB12			

Table S3ORR performance of GMC-CoPor-700 and some recently reportedMetal/N co-doped carbon materials. All the electrocatalysts were tested in 0.5M H2SO4

Reference

[1] S. Li, D. Wu, H. Liang, J. Wang, X. Zhuang, Y. Mai, Y. Su, X. Feng, *ChemSusChem*, 2014, 7, 3002.

[2] Q. Gao, Q. Lai, Y. Liang, *RSC Adv.*, **2015**, 5, 103302.

- [3] S. Bukola, B. Merzougui, A. Akinpelu, M. Zeama, *Electrochim. Acta*, 2016, 190, 1113.
- [4] X. Liu, I. S. Amiinu, S. Liu, K. Cheng, S. Mu, Nanoscale, 2016, 8, 13311.
- [5] Z. Li, Z. Liu, K. Zhu, Z. Li, B. Liu, J. Power Sources, 2012, 219, 163.
- [6] R. Liu, Y. Jin, P. Xu, X. Xing, Y. Yang, D. Wu, J. Colloid Interface Sci., 2016, 464, 83.
- Y. Wang, Y. Nie, W. Ding, S. Chen, K. Xiong, X. Qi, Y. Zhang, J. Wang, Z.
 Wei, *Chem. Commun.*, 2015, **51**, 8942.
- [8] X. Zheng, Z. Yang, J. Wu, C. Jin, J. Tian, R. Yang, RSC Adv. 2016, 6, 64155.
- [9] S.Yasuda, A. Furuya, Y. Uchibori, J. Kim, K. Murakoshi, *Adv. Funct. Mater.*2016, 26, 738.
- [10] Tran, T.-N.; Song, M. Y.; Singh, K. P.; Yang, D.-S.; Yu, J.-S. J. Mater. Chem.A, 2016, 4, 8645.
- [11] S. Li, L. Zhang, H. Liu, M. Pan, L. Zan, J. Zhang, *Electrochim. Acta*, 2010, 55, 4403.
- [12] H. Liang, W. Wei, Z. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc., 2013, 135, 16002.