# Supporting materials

# Mesoporous SnO<sub>2</sub>–SiO<sub>2</sub> and Sn–Silica–Carbon nanocomposites by novel nonhydrolytic templated sol-gel synthesis

David Skoda,<sup>a,b</sup> Ales Styskalik,<sup>a,b</sup> Zdenek Moravec,<sup>a</sup> Petr Bezdicka,<sup>c</sup> Jiri Bursik,<sup>d</sup> P. Hubert Mutin,<sup>e</sup> Jiri Pinkas,<sup>\*,a,b</sup>

<sup>a</sup> Masaryk University, Department of Chemistry, Kotlarska 2, CZ-61137 Brno, Czech Republic

<sup>b</sup> Masaryk University, CEITEC MU, Kamenice 5, CZ-62500 Brno, Czech Republic

<sup>c</sup> Institute of Inorganic Chemistry ASCR, CZ-25068 Husinec-Rez, Czech Republic

<sup>d</sup> Institute of Physics of Materials ASCR, Zizkova 22, CZ-616 62 Brno, Czech Republic

<sup>e</sup> Institut Charles Gerhardt UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

jpinkas@chemi.muni.cz

## GC-MS of byproducts



Fig. 1S GC chromatogram and MS spectrum at 3.58 min of Si(OAc)<sub>4</sub> + Sn(NEt<sub>2</sub>)<sub>4</sub> reaction byproducts.

### TG/DSC curves



Fig. 2S TG/DSC curves of SiSnP sample. The analysis was performed in air.



Fig. 3S TG/DSC curves of SiSnPA sample. The analysis was performed in air.



Fig. 4S TG/DSC curves of SiSnP sample. Analyses were performed in N<sub>2</sub>.



Fig. 5S TG/DSC curves of SiSnPA sample. The analysis was performed in N<sub>2</sub>.

HT powder XRD



Fig. 6S Powder XRD patterns of SiO<sub>2</sub>-SnO<sub>2</sub> nanocomposites SiSnP500 and SiSnP-500N.



Fig. 7S HT powder XRD patterns of SiO<sub>2</sub>-SnO<sub>2</sub> nanocomposite SiSnP with the diffractions of SnO<sub>2</sub> (PDF 41-1445).

| Temperature | Size of the crystallites [nm] |       |       |       |
|-------------|-------------------------------|-------|-------|-------|
| [°C]        | 1,0,0                         | 0,0,1 | 1,1,0 | 1,1,1 |
| 500         | 7.33                          | 6.22  | 7.33  | 6.68  |
| 600         | 7.27                          | 6.25  | 7.27  | 6.68  |
| 700         | 7.51                          | 6.35  | 7.51  | 6.82  |
| 800         | 6.96                          | 6.45  | 6.96  | 6.68  |
| 900         | 6.75                          | 7.18  | 6.75  | 6.97  |
| 1000        | 7.12                          | 8.60  | 7.12  | 7.80  |
| 1100        | 8.34                          | 9.10  | 8.34  | 8.86  |
| 1200        | 9.99                          | 12.32 | 9.99  | 11.32 |

Table 1S Size of SnO<sub>2</sub> nanoparticles determined by the Rietveld refinement in SiSnP sample calcined at different temperatures



Fig. 8S Rietveld refinement pattern of SiSnP-500.

#### Rietveld refinement to file(s) SiSnP\_500°C.xy

BGMN version 4.2.22, 1855 measured points, 15 peaks, 37 parameters Rp=3.01% Rpb=14.14% R=3.63% Rwp=3.81% Rexp=3.05% Durbin-Watson d=1.46 1-rho=1.61%

Global parameters and GOALs

cassiterite/sum=ERROR P/sum=ERROR EPS2=0.000795+-0.000038

Local parameters and GOALs for phase Cassiterite

SpacegroupNo=136 HermannMauguin=P4\_2/m2\_1/n2/m XrayDensity=6.997 Rphase=3.34% UNIT=NM A=0.473419+-0.000067 C=0.319084+-0.000067 GrainSize(1,0,0)=7.335+-0.094 GrainSize(0,0,1)=6.22+-0.11 GrainSize(1,1,0)=7.335+-0.094 GrainSize(1,1,1)=6.682+-0.070 GEWICHT=SPHAR4, MeanValue(GEWICHT)=0.0848214 B1=ANISOLIN, MeanValue(B1)=0.0614393, sqrt3(det(B1))=0.0611355 Atomic positions for phase Cassiterite

2 0.0000 0.0000 0.0000 E=(SN+4(1.0000))

4 0.6947 0.6947 0.0000 E=(O-2(1.0000))



Fig. 9S Powder XRD patterns of SiSnPA-500 and SiSnPA-500N nanocomposites.



Fig. 10S Rietveld refinement pattern of SiSnPA-500.

#### Rietveld refinement to file(s) SiSnPA-500.xy

BGMN version 4.2.22, 2005 measured points, 15 peaks, 34 parameters Rp=3.27% Rpb=11.14% R=4.61% Rwp=4.00% Rexp=2.70% Durbin-Watson d=0.98 1-rho=0.985%

Global parameters and GOALs

240\*EPS2/2=0.0765+-0.0040 EPS2=0.000638+-0.000033

Local parameters and GOALs for phase Cassiterite

SpacegroupNo=136 HermannMauguin=P4\_2/m2\_1/n2/m XrayDensity=7.018 Rphase=4.11% UNIT=NM A=0.473260+-0.000068 C=0.318366+-0.000067 k2=0.0000069+-0.0000045 B1=0.0721+-0.0011 GrainSize(1,1,1)=5.890+-0.092 my=0.203889+-0.000065 GEWICHT=SPHAR4, MeanValue(GEWICHT)=0.136657 Atomic positions for phase Cassiterite

\_\_\_\_\_

- 2 0.0000 0.0000 0.0000 E=(SN+4(1.0000))
- 4 0.6947 0.6947 0.0000 E=(O-2(1.0000))



Fig. 11S Rietveld refinement pattern of SiSnP-500 after calcination up to 1200 °C.

#### Rietveld refinement to file(s) SiSnPA-500\_1200°C.xy

BGMN version 4.2.22, 2005 measured points, 15 peaks, 34 parameters Rp=3.16% Rpb=14.09% R=4.62% Rwp=3.93% Rexp=2.87% Durbin-Watson d=1.36 1-rho=1.12%

Global parameters and GOALs

240\*EPS2/2=0.0594+-0.0017 EPS2=0.000495+-0.000014

Local parameters and GOALs for phase Cassiterite

SpacegroupNo=136 HermannMauguin=P4\_2/m2\_1/n2/m XrayDensity=7.004 Rphase=3.74% UNIT=NM A=0.473489+-0.000049 C=0.318699+-0.000052 k2=0.000080+-0.0000031 B1=0.05079+-0.00085 GrainSize(1,1,1)=8.36+-0.14 my=0.203478+-0.000043 GEWICHT=SPHAR4, MeanValue(GEWICHT)=0.0933681 Atomic positions for phase Cassiterite

-----

| 2 0.0000 0.0000 0.0000 | E=(SN+4(1.0000)) |
|------------------------|------------------|
|------------------------|------------------|

4 0.6947 0.6947 0.0000 E=(O-2(1.0000))



Fig. 12S Rietveld refinement pattern of SiSnF-500N.

#### Rietveld refinement to file(s) SiOSnF-500N.xy

BGMN version 4.2.22, 6854 measured points, 77 peaks, 70 parameters Rp=1.38% Rpb=39.71% R=1.47% Rwp=1.88% Rexp=1.53% Durbin-Watson d=1.31 1-rho=0.160%

Global parameters and GOALs

tin/sum=0.5587+-0.0047 cassiterite/sum=0.3794+-0.0049 romarchite/sum=0.0618+-0.0051 240\*EPS2/2=ERROR

Local parameters and GOALs for phase Tin\_syn

SpacegroupNo=141 HermannMauguin=I4\_1/a2/m2/d XrayDensity=7.309 Rphase=2.94% UNIT=NM A=0.582520+-0.000013 C=0.317844+-0.000010 k2=0.0000505+-0.00000043 B1=0.00291+-0.00024 GrainSize(1,1,1)=146+-12 my=0.1805331+-0.0000079 GEWICHT=SPHAR4, MeanValue(GEWICHT)=0.0296591 Atomic positions for phase Tin\_syn

4 0.0000 0.0000 0.0000 E=(SN(1.0000))

Local parameters and GOALs for phase Cassiterite

SpacegroupNo=136 HermannMauguin=P4\_2/m2\_1/n2/m XrayDensity=7.018 Rphase=2.48% UNIT=NM A=0.473275+-0.000046 C=0.318318+-0.000058 k2=0.0000022+-0.0000013 B1=0.02112+-0.00083 GrainSize(1,1,1)=20.09+-0.79 my=0.138258+-0.000027 GEWICHT=SPHAR4, MeanValue(GEWICHT)=0.0207914 Atomic positions for phase Cassiterite

2 0.0000 0.0000 0.0000 E=(SN+4(1.0000))

4 0.6947 0.6947 0.0000 E=(O-2(1.0000))

\_\_\_\_\_

Local parameters and GOALs for phase ROMARCHITE

SpacegroupNo=129 HermannMauguin=P4/n2\_1/m2/m XrayDensity=6.408 Rphase=2.12% UNIT=NM k2=0 B1=0.0300000 GrainSize(1,1,1)=14.1471 my=0.140348 GEWICHT=SPHAR4, MeanValue(GEWICHT)=0.00338229 Atomic positions for phase ROMARCHITE

2 0.0000 0.0000 0.0000 E=(O-2(1.0000))

2 0.0000 0.5000 0.2345 E=(SN+2(1.0000))



Fig. 13S Rietveld refinement pattern of SiSnPA-500N.

Rietveld refinement to file(s) SiSnPA-500N.xy

Rp=3.16% Rpb=11.84% R=3.81% Rwp=3.92% Rexp=2.89% Durbin-Watson d=1.25 1-rho=1.49%

Global parameters and GOALs

cassiterite/sum=0.9036+-0.0018 tin/sum=0.0964+-0.0018 240\*EPS2/2=0.0653+-0.0044 EPS2=0.000544+-0.000037

Local parameters and GOALs for phase Cassiterite

SpacegroupNo=136

HermannMauguin=P4\_2/m2\_1/n2/m XrayDensity=6.997 Rphase=3.65% UNIT=NM A=0.473588+-0.000082 C=0.318865+-0.000082 k2=0 B1=0.0726+-0.0030 k1=0.177+-0.087 GrainSize(1,1,1)=5.333+-0.057 my=0.203287+-0.000076 GEWICHT=SPHAR4, MeanValue(GEWICHT)=0.101946 Atomic positions for phase Cassiterite -----2 0.0000 0.0000 0.0000 E=(SN+4(1.0000)) 4 0.6947 0.6947 0.0000 E=(O-2(1.0000)) Local parameters and GOALs for phase Tin\_syn \*\*\*\*\*\*\* SpacegroupNo=141 HermannMauguin=I4\_1/a2/m2/d XrayDensity=7.291 Rphase=3.81% UNIT=NM A=0.582993+-0.000057 C=0.318117+-0.000034 k2=0.0000063+-0.0000034 B1=0.00395+-0.00037 GrainSize(1,1,1)=107+-10 my=0.265389+-0.000073 GEWICHT=SPHAR4, MeanValue(GEWICHT)=0.0103778

Atomic positions for phase Tin\_syn

4 0.0000 0.0000 0.0000 E=(SN(1.0000))



Fig. 14S Powder XRD diffractogram of the sample SiSnF-400N. The diffractions correspond to SnO<sub>2</sub> (PDF 41-1445).



Fig. 15S N<sub>2</sub> adsorption/desorption isotherms of air calcined xerogels. SiSnPA-500 sample (top) prepared in an autoclave, SiSnF-500 (bottom) prepared with the Schlenk technique.



Fig. 16S N<sub>2</sub> adsorption/desorption isotherms of air calcined xerogels. SiSnPA-500 sample (top) calcined in air and SiSnPA-500N sample heated under N<sub>2</sub>.



Fig. 17S Pore size distributions based on NLDFT (asdorption branch) (red) and QSDFT (black) models.



Fig. 18S TEM image of SiSnPA-500 xerogel.

Pyridine adsorption



Fig. 19S IR spectrum of calcined SiSnP-500 xerogel after pyridine adsorption.

## Catalysis

Aminolysis of styrene oxide

Conditions: 25 mg of calcined  $SnO_2$ -SiO<sub>2</sub> xerogel, 5 mmol of substrates, 5 cm<sup>3</sup> of toluene, 50 °C.



Fig. 20S Aminolysis of styrene oxide with aniline.



Fig. 21S <sup>1</sup>H NMR spectrum of a reaction mixture after aminolysis reaction.

### MPV reduction of 4-tert-butylcyclohexanone

Conditions: 25 mg of calcined  $SnO_2$ -SiO<sub>2</sub> xerogel, 500 mg (3.54 mmol) of 4-*tert*-butylcyclohexanone, 15 cm<sup>3</sup> (196 mmol) of dry 2-propanol, and 0.100 cm<sup>3</sup> of nonane as an internal standard. Reaction mixture was refluxed for 1 h.



Fig. 22S MPV reduction of 4-tert-butylcyclohexanone in isopropanol.



Fig. 23S GC chromatogram of reaction products in the MPV reduction.