### **Electronic Supplementary Information (ESI)**

# Environmentally sensitive nanohydrogels decorated with three-strand oligonucleotide helix for controlled loading and prolonged release of intercalators

Wioletta Liwinskaa, Michał Symonowicza, Iwona Stanislawskab, Marek Lypb, Zbigniew

Stojeka, Ewelina Zabosta\*

<sup>a</sup> Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland

<sup>b</sup> College of Rehabilitation, Kasprzaka 49, Warsaw, Poland

\*ezabost@chem.uw.edu.pl,

#### Formulas used in Electrochemical Impedance Spectroscopy (EIS) analysis

The impedance of the CPE parameter in the Ershler – Randles model applied in fitting calculated data to experimental EIS points is described by Eq.(1):

$$Z_{CPE} = T^{-1} (j\omega)^{-\phi} \tag{1}$$

where,  $\omega$  is angular frequency,  $j = (-1)^{1/2}$ , *T* is capacitive coefficient, and  $\phi$  is the exponent value.

The average double layer capacitance,  $C_{dl}$  is combined with the capacitive coefficient *T* and can be calculated according to Eq. (2):

$$T = C_{dl}^{\phi} (R_s^{-1} R_{CT}^{-1})^{1-\phi}$$
<sup>(2)</sup>

where  $R_s$  and  $R_{CT}$  are the values of solution resistance and the resistance of the charge transfer.

As the semi-infinitive diffusion of 1-electron simple redox species ( $[Fe(CN)_6]^{3-/4-}$ ) takes place, the mass transfer resistance (Warburg impedance, W), visible in EIS plots as a linear part (see Fig.5 of ms.), can be estimated from Eq.(3):

$$W = \sigma \omega^{1/2} (1 - j) \tag{3}$$

where the Wartburg parameter,  $\sigma$ , is described as (Eq.(4)):

$$\sigma = \frac{RT}{n^2 F^2 \sqrt{2}} \left[ \frac{1}{\sqrt{D_o}} \frac{1}{C_o} + \frac{1}{\sqrt{D_R}} \frac{1}{C_R} \right]$$
(4)

and  $D_o$  and  $C_o$  are diffusion coefficient and concentration of oxidized form, respectively, and  $D_R$  and  $C_R$  are diffusion coefficient and concentration of the reduced form of the redox species.

The electron transfer-rate constant,  $k_0$ , can be determined using Eq. (5):

$$k_0 = \left(\frac{\sigma}{R_{CT}}\right) / \frac{2\xi^{\alpha}}{2D_{ox}} \tag{5}$$

where  $k_0$  is electron-transfer rate constant,  $\xi = (\sqrt{D_{0x}/D_{Red}})$  (for 1-electron, fast and reversible electrode process of  $[Fe(CN)_6]^{3-/4-} \approx 1$ ),  $\alpha$  is transfer coefficient and is assumed to be equal to 0.5,  $D_{0x}$  is the diffusion coefficient of  $[Fe(CN)_6]^{3-/4-}$  that was taken from <sup>1</sup> as 0.896 x 10<sup>-5</sup> cm<sup>2</sup>s<sup>-1</sup> and corrected to the value of 0.726 x 10<sup>-5</sup> cm<sup>2</sup>s<sup>-1</sup>, as the diffusion coefficient of  $[Fe(CN)_6]^{3-/4-}$  has 19% lower values in the PNIPA gel environment compared to aqueous conditions <sup>2</sup>.

# 1. Figures

• Oligo 1 5' Acryd-GGGGG-GCTCTTGGAACT 3'

## • Oligo 2 5' Acryd GGGGG-TGAGTAGACACT 3'





| Range                   | Color   |
|-------------------------|---------|
| $0.000 \le P \le 0.010$ | #FF00FF |
| 0.010 < P < 0.012       | #CC00FF |
| $0.012 \le P \le 0.017$ | #9900FF |
| 0.017 ≤ P < 0.023       | #6600FF |
| $0.023 \le P \le 0.033$ | #3300FF |
| $0.033 \le P \le 0.046$ |         |
| $0.046 \le P < 0.065$   | #0033FF |
| $0.065 \le P < 0.091$   | #0066FF |
| $0.091 \le P < 0.128$   | #0099FF |
| $0.128 \le P < 0.180$   | #00CCFF |
| $0.180 \le P < 0.253$   | #00FFFF |
| 0.253≤ P < 0.356        | #00FFCC |
| 0.356≤ P < 0.5          | #00FF99 |
| $0.500 \le P < 0.644$   | #00FF66 |
| 0.644 ≤ P < 0.747       | #00FF33 |
| 0.747 ≤ P < 0.820       | #00FF00 |
| $0.820 \le P \le 0.872$ | #33FF00 |
| 0.872 ≤ P < 0.909       | #66FF00 |
| 0.909≤ P < 0.935        | #99FF00 |
| 0.935≤ P < 0.954        | #CCFF00 |
| 0.954 ≤ P < 0.967       | #FFFF00 |
| 0.967 ≤ P < 0.977       | #FFCC00 |
| 0.977 ≤ P < 0.983       | #FF9900 |
| $0.983 \le P < 0.988$   | #FF6600 |
| 0.988≤ P < 0.990        | #FF3300 |
| $0.990 \le P \le 1.000$ | #FF0000 |
| JUA AL                  |         |



- Oligo 1-2 5' Acryd GGGGG-TGAGTAGACACTGCTCTTGGAACT-GGGGG Acryd-3'
- Oligo 3 3' ACTCATCTGTGACGAGAACCTTGA 5'





Fig. 2S Simulation of the ability of oligo1-2 and oligo3 strands for selfhybridization.



Fig. 3S Simulation of the  $T_m$  and  $C_p$  of oligo1-2-3 tri-segment hybrid.



B)

Size distribution of PNIPA-co-AAc-oligo1-2 NPs by Intensity at 37 and 45°C Intensity % 0.1 Size (d.nm) C) Size distribution of PNIPA -co-AAc-oligo1-2-3 NPs by Intensity at 37 and 45°C Intensity % 0. 0.1 Size (d.nm)

**Fig. 4S** Sizes of PNIPA-co-AAc- (A), PNIPA-co-AAc-oligo1-2- (B) and PNIPA-AAc-oligo1-2-3 nanogels (C) obtained by DLS at 37 and 45 °C, respectively.



Zeta Potential distribution of PNIPA -co-AAc NPs at 37 and 45°C

B)

Zeta Potential distribution of PNIPA -co-AAc -oligo1-2 NPs at 37 and 45°C





**Fig. 5S** Zeta potentials of PNIPA-co-AAc- (A), PNIPA-co-AAc-oligo1-2- (B) and PNIPA-AAc-oligo1-2-3 nanogels (C) recorded by DLS at 37 and 45°C, respectively.

A)





**Fig. 6S** Plots of log (Mf/Mt) vs. log t constructed according to Peppas model in selected ranges of time (A-D) for the release of doxorubicin from: PNIPA-co-AAc- (black circles), PNIPA-co-AAc-oligo1-2- (red triangles) and PNIPA-AAc-oligo1-2-3 nanogels (blue squares). Temperature: 37 °C (filled symbols), 45°C (empty symbols).

<sup>2</sup> M. Karbarz, M. Gniadek, Z. Stojek, One dimensional volume-phase transition of Nisopropylacrylamide gels on the surface of gold electrodes, *Electroanal.*, 2005, **17**, 1396-1400.

<sup>&</sup>lt;sup>1</sup>D. Lide, H. Frederikse, Handbook of Chemistry and Physics, CRC Press, New York, 2007.