Supplemental Material

Supplemental Tables

Primer sequences of human glyceraldehydes-3-phosphate dehydrogenase (GAPDH), human collagen type I alpha 2 (COL1A2), human vascular endothelial-cadherin (CDH5/VE-Cadherin), human alpha-smooth muscle actin (α -SMA); actin alpha 2 (ACTA2), human Snail, human vascular cell adhesion molecule-1 (VCAM-1) and human intercellular adhesion molecule-1 (ICAM-1).

Table 1. Primer sequences

Gene	Forward Primer	Reverse Primer	References	
HU GAPDH Housekeeper	GACCACAGTCCATGACATCACT	TCCACCACCCTGTTGCTGTAG	Tallkvist et al. (2000) ¹	
HU COL1A2	AGGACAAGAACACGTCTGG	GGTGATGTTCTGAGAGGCATAG	Wang et al. (2014) ²	
HU CDH5/ VE-cadherin	CAGCCCAAAGTGTGTGAGAA	CGGTCAAACTGCCCATACTT	Cheng et al. (2013) ³	
HU ACTA2	GTGCTGGACTCTGGAGATGG	AATAGCCACGCTCAGTCAGG	Liew et al. (2006) ⁴	
HU Snail	CTAGAGTCTGAGATGCCCCG	CTAGAGTCTGAGATGCCCCG	Franses et al. (2013) ⁵	
HU VCAM-1	CATGGAATTCGAACCCAAA	CCTGGCTCAAGCATGTCATA	Calabriso et al. (2015) ⁶	
HU ICAM-1	AGACATAGCCCCACCATGAG	CAAGGGTTGGGGTCAGTAGA	Calabriso et al. (2015) ⁶	

	Static		Low Shear		High Shear	
	-TGF-β	+TGF-β	-TGF-β	+TGF-β	-TGF-β	+TGF-β
α -SMA protein expression	+	+	+	+	-	-
α -SMA gene expression	-	-	-	+	-	-
VE-cadherin gene expression	-	-	-	-	-	-
Snail gene expression	-	-	-	-	+	-
VCAM-1 gene expression	-	-	+	+	-	-
ICAM-1 gene expression	-	-	-	-	-	-
HUVEC Invasion	-	-	-	+	-	-
Cell-cell junctional gap width increase	-	+	+	+	-	-
COL1A2 gene expression (fibrosis)	+	+	-	-	-	-
Collagen type I production	+	+	-	+	-	-

Table 2. Full summary of endothelial to mesenchymal transformation (EndMT) study results. Symbols depict regulation of human umbilical vein endothelial cells (HUVEC) behavioral changes when exposed to static conditions, low at 1 or (c) high at 20 dynes cm⁻² shear flow with and without transforming growth factor-beta 1 (TGF- β 1). Conditions with (-) sign represent no significance, (+) show significant upregulation among conditions compared to static condition without TGF- β 1 exposure.

Supplemental Figure and Figure Legends

Fig. 1. Protein expression analysis of alpha-smooth muscle actin (α SMA) and endothelial to mesenchymal (EndMT) marker. Error bars show SEM, n = 5 confocal images. Bars that don't share any letters are significantly different according to a one-way ANOVA with Tukey's post-hoc testing (*P*<0.05).

Supplemental Video and Video Legends

Supplemental Video 1: Microbeads flowing at the bottom wall of microchannel over collagen gel.

Reference

- J. Tallkvist, C. L. Bowlus and B. Lönnerdal, *Am. J. Clin. Nutr.*, 2000, **72**, 770–775.
- L. Wang, Z. Zhao, M. B. Meyer, S. Saha, M. Yu, A. Guo, K. B. Wisinski, W. Huang, W. Cai, J. W. Pike, M. Yuan, P. Ahlquist and W. Xu, *Cancer Cell*, 2014, **25**, 21–36.
- J. C. Cheng, H. M. Chang and P. C. K. Leung, J. Biol. Chem., 2013, **288**, 33181–33192.
- 4 K. J. L. Liew and V. T. K. Chow, J. Virol. Methods, 2006, **131**, 47–57.
- 5 J. W. Franses, N. C. Drosu, W. J. Gibson, V. C. Chitalia and E. R. Edelman, *Int. J. Cancer*, 2013, **133**, 1334–1344.
- 6 N. Calabriso, E. Scoditti, M. Massaro, M. Pellegrino, C. Storelli, I. Ingrosso, G. Giovinazzo and M. A. Carluccio, *Eur. J. Nutr.*, 2016, **55**, 477–489.