Efficient Hydroarylation and Hydroalkenylation of Vinylarenes by Brønsted Acid Catalysis

Muwen Liu, ^{†,§} Jinlong Zhang, [†] Hui Zhou, ^{†,§} Huameng Yang, [†] Chungu Xia, ^{*,†} and Gaoxi Jiang^{*,†}

⁺State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China

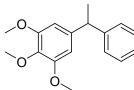
§University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Supporting Information

Contents

1. General Information	S2
2. General Procedures	S3
3. NMR spectra	S15

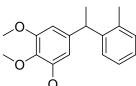
1. General Information


All chemical reagents used were brought from commerce source, and without further purification. Dioxane, tetrahydrofuran (THF), and cyclohexane were distilled from Na prior to use. All reactions were carried out under nitrogen with standard Schlenk techniques. Catalyst was kept and handled in glove box. All NMR data were collected by a Bruker 400 MHz NMR Spectrometer using CDCl₃ as solvent. All chemical shifts are reported in ppm and were referenced to residual solvent peaks (¹H NMR CDCl₃ δ = 7.26 ppm, ¹³C NMR CDCl₃ δ = 77.0 ppm).

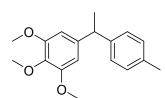
2. General Procedures

General Procedure A for Vinylarenes for the Hydroarylation

In a glovebox, the catalyst Tf₂NH (4 mol%, 4.7 mg) was added to a schlenk tube. Then 0.2 mmol of substrate, and 171.6 mg 1,2,3-Trimethoxybenzeney (5 eqvi., 1 mmol) and dioxane (2 mL) were added. After this, the reaction mixture was heated to 90 °C for 12 hours. When the reaction finished, the solvent was removed under vacuum. The residual was purified by silica gel column chromatography using petroleum ether as the eluant.

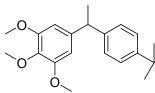

3a: Compound 3a was prepared according to the general procedure A

and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 75 % yield as colourless oil.


¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.27 - 7.21$ (m, 4H), 7.16 - 7.12 (m, 1H), 6.90 (d, J = 8.8, 1H), 6.64 (d, J = 8.8, 1H), 4.47 (q, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.61 (s, 3H), 1.57 (d, J = 7.2, 3H); ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 152.10$, 151.57, 146.99, 142.34, 132.55, 128.19, 127.57, 125.74, 121.84, 107.05, 60.66, 55.96, 37.92, 21.67; **HRMS** (ESI) calcd. for C₁₇H₂₀O₃ [M⁺]: 272.1412, found: 272.1429.

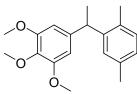
3b: Compound 3b was prepared according to the general procedure A

and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 86 % yield as colourless oil.


^O ¹**H NMR** (CDCl₃, 400 MHz): δ = 7.18 – 7.08 (m, 4H), 6.82 (d, *J* = 8.8, 1H), 6.63 (d, *J* = 8.8, 1H), 4.64 (q, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.64 (s, 3H), 2.34 (s, 3H), 1.55 (d, *J* = 7.2, 3H); ¹³**C NMR** (CDCl₃, 100 MHz): δ = 152.05, 151.51, 144.91, 142.24, 135.79, 132.44, 130.18, 126.63, 125.75, 121.63, 106.83, 60.61, 60.37, 55.92, 34.18, 21.18, 19.52; **HRMS** (ESI) calcd. for C₁₈H₂₂O₃ [M⁺]: 286.1569, found: 286.1586. **3c**: Compound 3c was prepared according to the general procedure A and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 82 % yield as colourless oil.

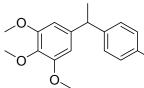
¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.15 - 7.09$ (m, 4H), 6.92 (d, J = 8.8, 1H), 6.67 (d, J = 8.4, 1H), 4.48 (q, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.68 (s, 3H), 2.32 (s, 3H), 1.58 (d, J = 7.2, 3H); ¹³**C NMR** (CDCl₃, 100

MHz): δ = 152.01, 151.53, 143.93, 142.32, 135.13, 132.79, 128.89, 127.42, 121.81, 107.09, 60.75, 60.65, 55.96, 37.39, 21.79, 20.99; **HRMS** (ESI) calcd. for C₁₈H₂₂O₃ [M⁺]: 286.1569, found: 286.1582.


3d: Compound 3d was prepared according to the general procedure A

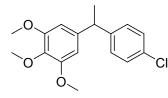
and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 88 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): δ 7.33 (d, *J* = 8.4, 2H), 7.20 (d, *J* = 8.4, 2H), 6.92 (d, *J* = 8.4, 1H), 6.67 (d, *J* = 8.4, 1H), 4.50 (q, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.70 (s, 3H), 1.60 (d, J = 7.6, 3H), 1.32 (s, 9H); ¹³**C NMR** (CDCl₃, 100 MHz): δ 151.97, 151.50, 148.45, 143.67, 142.30, 132.93, 127.18, 125.05, 121.92, 107.16, 60.76, 60.66, 55.95, 37.19, 34.33, 31.45, 21.70; **HRMS** (ESI) calcd. for C₂₁H₂₈O₃ [M⁺]: 328.2038, found: 328.2050.


3e: Compound 3e was prepared according to the general procedure A

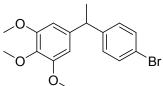
and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 92 % yield as colourless oil.

¹H NMR (CDCl₃, 400 MHz): δ = 7.05 – 6.92 (m, 3H), 6.83 (d, J = 8.4, 1H), 6.64 (d, J = 8.4, 1H), 4.62 (q, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.66 (s, 3H), 2.30 (d, J = 6.4, 6H), 1.55 (d, J = 7.2, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 151.99, 151.52, 144.62, 142.22, 135.05, 132.66, 132.55, 130.09, 127.38, 126.42, 121.69, 106.85, 60.61, 60.39, 55.91, 34.14, 21.25, 19.07; HRMS (ESI) calcd. for $C_{19}H_{24}O_3$ [M⁺]: 300.1725, found: 300.1742.


3f: Compound 3f was prepared according to the general procedure A

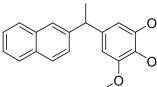
and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 75 % yield as colourless oil.

¹H NMR (CDCl₃, 400 MHz): δ = 7.19 (m, 2H), 6.97 (t, 2H), 6.89 (d, J = 8.4, 1H), 6.66 (d, J = 8.8, 1H), 4.45 (q, 1H), 3.85 (d, J = 3.6, 6H), 3.64 (s, 3H), 1.56 (d, J = 7.6, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 162.30, 159.88, 152.22, 151.50, 142.71, 142.67, 142.35, 132.23, 128.90, 128.82, 121.63, 114.96, 114.75, 107.03, 77.37, 77.05, 76.74, 60.65, 55.94, 37.28, 21.74; HRMS (ESI) calcd. for C₁₇H₁₉FO₃ [M⁺]: 290.1318, found: 290.1336.


3g: Compound 3g was prepared according to the general procedure A and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 62 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.24 - 7.21$ (m, 2H), 7.16 - 7.14 (m, 2H), 6.88 (d, J = 8.4, 1H), 6.66 (d, J = 8.8, 1H), 4.44 (q, 1H), 3.85 (d, J = 1.6 Hz, 6H), 3.64 (s, 3H), 1.55 (d, J = 7.6, 3H); ¹³**C NMR**

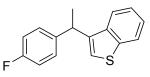
 $(CDCI_{3}, 100 \text{ MHz}): \delta = 152.30, 151.50, 145.59, 142.35, 131.85, 131.36, 128.89, 128.26, 121.64, 107.03, 60.63, 55.96, 37.45, 21.53;$ **HRMS**(ESI) calcd. for C₁₇H₁₉ClO₃ [M⁺]: 306.1023, found: 306.1046.


3h: Compound 3h was prepared according to the general procedure A

and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 50 % yield as colourless oil.

^O ¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.39 - 7.36$ (m, 2H), 7.10 (d, J = 8.4, 2H), 6.88 (d, J = 8.8, 1H), 6.65 (d, J = 8.8, 1H), 4.42 (q, 1H), 3.85 (s, 6H), 3.63 (s, 3H), 1.55 (d, J = 7.2, 3H); ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 152.31$, 151.50, 146.12, 142.34, 131.74, 131.21, 129.31, 121.64, 119.41, 107.03, 60.64, 55.96, 37.51, 21.46; **HRMS** (ESI) calcd. for C₁₇H₁₉BrO₃ [M⁺]: 350.0518, found: 350.0526.

3i^[1]: Compound 3i was prepared according to the general procedure A


and the reaction mixture waspurified by flash column chromatograph (petroleum ether) in 80 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.82 - 7.71$ (m, 4H), 7.48 - 7.36 (m, 3H), 6.95 (d, J = 8.8, 1H), 6.68 (d, J = 8.8, 1H), 4.69 (q, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 3.68 (s, 3H), 1.71 (d, J = 7.2, 3H); MS (EI): m/z (rel. intensity) 322 (72, M⁺), 307, 291, 141.

3j: Compound 3j was prepared according to the general procedure A and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 80% % vield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.49-7.36$ (m, 2H), 7.23-7.09 (m, 4H), 7.00-6.93 (m, 2H), 6.41 (s, 1H), 4.24 (q, 1H), 1.66-1.63 (m, 3H); ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 162.96$, 160.53, 154.88, 139.04, 129.03, 124.27, 123.61, 122.60, 122.33, 120.57, 120.43, 115.53, 115.32, 111.03, 39.06, 20.47; **HRMS** (ESI) calcd. for C₁₆H₁₃FO [M⁺]: 240.0950, found: 240.0978.

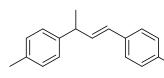
3k^[1]: Compound 3k was prepared according to the general procedure A

and the reaction mixture was purified by flash column chromatograph (petroleum ether) in 84 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): δ = 7.45-7.40 (m, 4H),7.29 (s, 1H), 7.21-7.12 (m, 4H), 3.62-3.55 (m, 1H), 1.44 (d, J = 7.2, 3H); MS (EI): m/z (rel. intensity) 256 (75, M⁺), 241, 221, 196, 161, 128, 110, 88.

General Procedure B for Homo-Hydroalkenylation

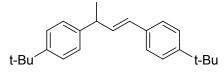
In a glovebox, the catalyst Tf₂NH (4 mol%, 4.7 mg) was added to a Schlenk tube. Then 0.2 mmol of styrene was added by microsyringe, followed by addition of 1.5 mL THF, and 0.5 ml cyclohexane as solvent. After this, the Schlenk tube was sealed, and heated to 80 °C for 12 hours.


When the reaction finished, the solvent was removed under vacuum. Then he residual was purified by silica gel column chromatography using n-Pentane as the eluant.

4b^[2]: Compound 4b was prepared according to the general procedure

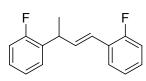
B and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 82 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): δ = 7.43-7.73 (m, 1H),7.29-7.12 (m, 7H), 6.62 (d, *J* = 16, 1H), 6.27 (q, 1H), 3.94-3.87 (m, 1H), 2.42 (s, 3H), 2.34 (s, 3H), 1.49 (d, *J* = 6.8, 3H); MS (EI): m/z (rel. intensity) 236 (40, M⁺), 221, 129, 105, 91.


4c^[2]: Compound 4c was prepared according to the general procedure B

and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 91 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): δ = 7.24-7.06 (m, 8H), 6.39-6.28 (m, 2H), 3.61-3.54 (m, 1H), 2.31 (d, *J* = 5.6, 6H), 1.44 (d, *J* = 6.8, 3H); MS (EI): m/z (rel. intensity) 236 (53, M⁺), 221, 129, 105, 91, 65.

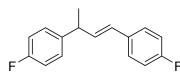

4d^[3]: Compound 4d was prepared according to the general procedure

B and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 82 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): δ = 7.35-7.32 (m, 6H), 7.22-7.20 (m, 2H), 6.45-6.32 (m, 2H), 3.65-3.58 (m, 1H), 1.47 (d, J = 6.8, 3H), 1.32 (s, 9H), 1.31 (s, 9H); MS (EI): m/z (rel. intensity) 320 (8, M⁺), 263, 207, 145, 117, 91, 57.

4j^[4]: Compound 4j was prepared according to the general procedure B

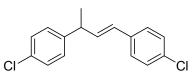
and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 78 % yield as colourless oil.


¹**H NMR** (CDCl₃, 400 MHz) : δ = 7.46-7.42 (m, 1H), 7.15-6.98 (m, 7H), ,

6.63-6.45 (m, 2H), 4.01-3.91 (m, 1H), 1.49 (d, J = 6.8, 3H); MS (EI): m/z (rel. intensity) 244 (73, M⁺), 229, 214, 183, 148, 133, 109, 83.

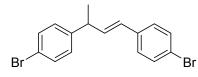
4k^[4]: Compound 4k was prepared according to the general procedure B and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 70 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz) : δ = 7.30-7.21 (m, 2H), 7.11-7.02 (m, 3H), 6.97-6.89 (m, 3H), 6.40-6.31 (q, 2H), 3.67-3.60 (m, 1H), 1.46 (d, J = 6.8, 3H); MS (EI): m/z (rel. intensity) 244 (76, M⁺), 229, 214, 183, 148, 133, 109, 83.

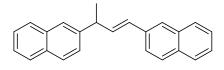

4f^[4]: Compound 4f was prepared according to the general procedure B

and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 90 % yield as colourless oil.

¹**H** NMR (CDCl₃, 400 MHz): δ = 7.83-7.28 (m, 2H), 7.23-7.19 (m, 2H), 7.03-6.96 (m, 4H), 6.37-6.22 (m, 2H), 3.65-3.58 (m, 1H), 1.45 (d, J = 7.2, 3H); MS (EI): m/z (rel. intensity) 244 (49, M⁺), 229, 214, 183, 148, 133, 109, 83.

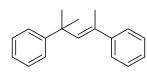

4g^[5]: Compound 4g was prepared according to the general procedure

B and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 60 % yield as colourless oil.


¹**H NMR** (CDCl₃, 400 MHz): δ = 7.20-7.07 (m, 8H), 6.27-6.17 (m, 2H), 3.54-3.48 (m, 1H), 1.35 (d, J = 6.8, 3H); MS (EI): m/z (rel. intensity) 276 (38, M⁺), 261, 241, 206, 191, 149, 125, 101, 95.

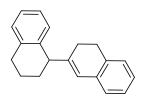
4h^[6]: Compound 4h was prepared according to the general procedure B and the reaction mixture was purified by flash column chromatograph

(n-Pentane) in 85 % yield as colourless oil. ¹**H NMR** (CDCl₃, 400 MHz): δ = 7.44-7.39 (m, 4H), 7.21 (d, J = 8.4, 2H), 7.14 (d, J = 8.0, 2H), 6.32 (d, *J* = 2.8, 2H), 3.61-3.56 (m, 1H), 1.44 (d, J=7.2, 3H); MS (EI): m/z (rel. intensity) 366 (12, M⁺), 244, 229, 214, 133, 123, 109, 83.


4I^[6]: Compound 4I was prepared according to the general procedure B and the reaction mixture was purified by flash column chromatograph

(n-Pentane) in 80 % yield as colourless oil.
¹H NMR (CDCl₃, 400 MHz): δ = 7.86-7.74 (m, 8H), 7.64 (d, J = 8.4, 1H), 7.52-7.42 (m, 5H),

6.68-6.59 (m, 2H), 3.93-3.87 (m, 1H), 1.65 (d, *J* = 6.8, 3H); MS (EI): m/z (rel. intensity) 308 (100, M⁺), 293, 265, 180, 165, 141, 134, 115.


4m^[7]: Compound 4m was prepared according to the general procedure

B and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 84 % yield as colourless oil.

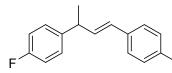
¹**H NMR** (CDCl₃, 400 MHz) : δ = 7.50-7.44 (m, 4H), 7.39-7.35 (m, 4H), 7.27-7.22 (m, 2H), 6.20 (s, 1H), 1.63 (s, 3H), 1.58 (s, 6H); MS (EI): m/z (rel. intensity) 236 (52, M⁺), 221, 193, 143, 127, 105, 91.

4n^[8]: Compound 4n was prepared according to the general procedure B

and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 75 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz) : δ = 7.21-7.00 (m, 8H),

6.22 (s, 1H), 3.72 (t, 1H), 2.85-2.76 (m, 4H), 2.45-2.09 (m, 2H), 1.98-1.93 (m, 2H), 1.87-1.73 (m, 2H); MS (EI): m/z (rel. intensity) 260 (46, M⁺), 232, 217, 130, 115, 97.


4o: Compound 4o was prepared according to the general procedure B and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 76 % yield as colourless oil.

¹H NMR (CDCl₃, 400 MHz): δ = 7.31-7.05 (m, 8H), 6.57 (s, 1H), 4.28 (t, 1H), 3.32 (q, 2H), 3.03-2.85 (m, 2H), 2.45-2.37 (m, 1H), 2.09-2.00 (m, 1H); ¹³**C** NMR (CDCl₃, 100 MHz): δ = 152.61, 146.03, 145.42, 144.08, 143.57, 127.55, 126.95, 126.59, 124.90, 124.78, 124.18, 123.84, 120.51, 47.60, 38.90, 34.04, 32.04; HRMS (ESI) calcd. for C₁₈H₁₆ [M⁺]: 232.1252, found: 232.1266.

General Procedure C for Cross-Hydroalkenylation of Vinylarenes

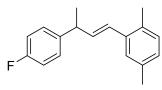
In a glovebox, the catalyst Tf₂NH (4 mol%, 4.7 mg) was added to a Schlenk tube. Then 0.2 mmol of substrate, and 122 μ L of 4-Fluorostyrene (5 eqvi., 1 mmol) was added, followed by addition of 1.5 mL THF, and 0.5 ml cyclohexane as solvent. After this, the Schlenk tube was sealed, and heated to 80 °C for 12 hours. When the reaction finished, the solvent was removed under vacuum. Then he residual was purified by silica gel column chromatography using n-Pentane as the eluant.

5b: Compound 5b was prepared according to the general procedure C

and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 86 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.35-7.08$ (m, 6H), 7.00-6.93 (m, 2H), 6.37-6.24 (m, 2H), 3.62-3.55 (m, 1H), 2.32 (s, 3H), 1.44 (d, J = 6.8, 3H); ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 163.24$, 160.80, 142.54, 136.91, 135.79, 135.30, 133.85, 129.22, 128.72, 127.61, 127.53, 127.16, 126.07, 115.42, 115.21, 42.16, 21.27, 21.00; **HRMS** (ESI) calcd. for C₁₇H₁₇F [M⁺]: 240.1314, found: 240.1328.

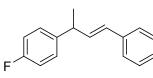
5c: Compound 5c was prepared according to the general procedure C


t-Bu

F

and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 78 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): δ = 7.36-7.27 (m, 2H), 7.07-6.92 (m, 6H), 6.34-6.20 (m, 2H), 3.84-3.77 (m, 1H), 2.37 (s, 9H), 1.45 (d, J=6.8, 3H); ¹³**C NMR** (CDCl₃, 100 MHz): δ = 163.26, 160.82, 143.27, 135.67, 134.83, 134.80, 132.40, 130.40, 127.61, 127.53, 127.24, 127.06, 126.86, 115.45, 115.23, 77.37, 77.06, 76.74, 38.04, 31.56, 30.22, 29.76, 29.42, 19.03; **HRMS** (ESI) calcd. for C₂₀H₂₃F [M⁺]: 282.1784, found: 282.1796.


5d: Compound 5d was prepared according to the general procedure C

and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 89 % yield as colourless oil.

¹**H NMR** (CDCl₃, 400 MHz): δ = 7.34-6.95 (m, 7H), 6.37-6.30 (m, 2H), 3.87-3.80 (m, 1H), 2.35 (d, J = 5.6, 6H), 1.45 (d, J = 6.8, 3H); ¹³**C NMR** (CDCl₃, 100 MHz): δ = 163.25, 160.80, 143.28, 135.72, 134.79, 132.45, 130.41, 127.63, 127.55, 127.21, 127.08, 126.89, 115.48, 115.27, 77.42, 77.10, 76.78, 38.02, 21.24, 20.51, 19.10; **HRMS** (ESI) calcd. for C₁₈H₁₉F [M⁺]: 254.1471, found: 254.1486.

5e: Compound 5e was prepared according to the general procedure C

CL

and the reaction mixture was purified by flash column chromatograph (n-Pentane) in 55 % yield as colourless oil.

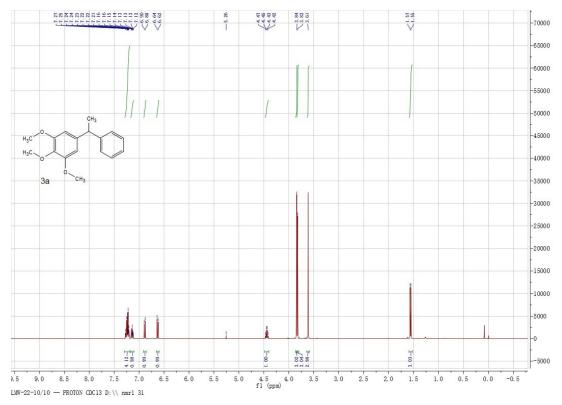
¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.36-7.18$ (m, 6H), 7.02-6.94 (m, 2H), 6.41-6.26 (m, 2H), 3.65-3.59 (m, 1H), 1.48-1.42 (m, 3H); ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 162.69$, 160.27, 135.76, 134.40, 132.75, 128.68, 127.39, 115.40, 115.19, 77.38, 77.06, 76.74, 41.84, 21.27; **HRMS** (ESI) calcd. for C₁₆H₁₄ClF [M⁺]: 260.0768, found: 260.0784

Reference:

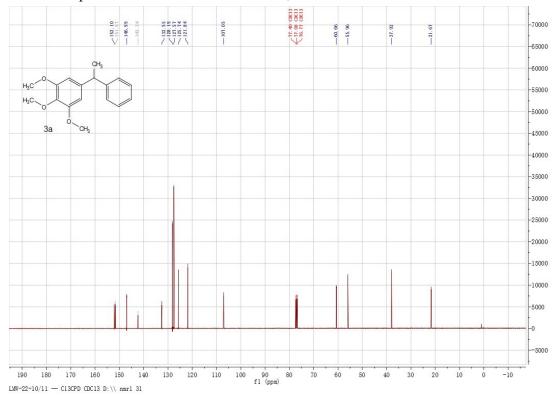
1, B. L. H. Taylor, E. C. Swift, J. D. Waetzig, E. R. Jarvo, *J. Am. Chem. Soc.* **2011**, *133*, 389.

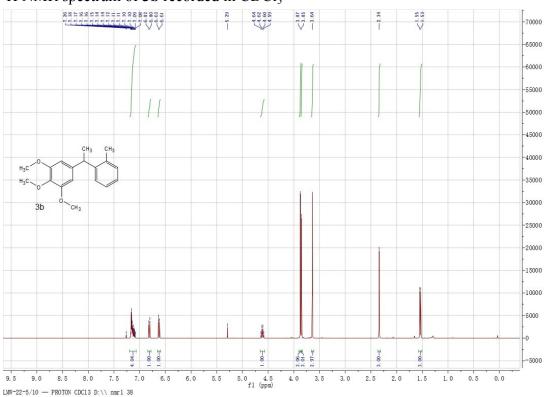
2, H. Ma, Q. Sun, W. Li, J. Wang, Z. Zhang, Y. Yang, Z. Lei, T*etrahedron Lett.* **2011**, *52*, 1569.

3, J. H. Choi, J. K. Kwon, T. V. RajanBabu, H. J. Lim, *Adv. Synth. Catal,* **2013**, *355,* 3633.

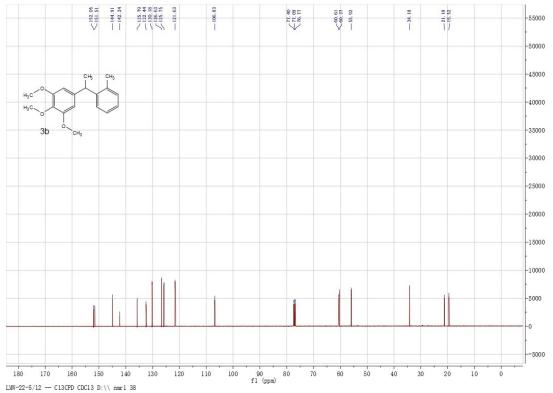

4, C.-C. Wang, P.-S. Lin, C.-H.g Cheng, *Tetrahedron Lett.* **2004**, *45*, 6203. 5, G. W. Kabalka, G. Dong, B, Venkataiah, *Tetrahedron Lett.* 2004, *45*, 2775. 6, T. Tsuchimoto, S. Kamiyama, R. Negoro, E. Shirakawa, Y. Kawakami , *Chem. Commun.*, **2003**, 852.

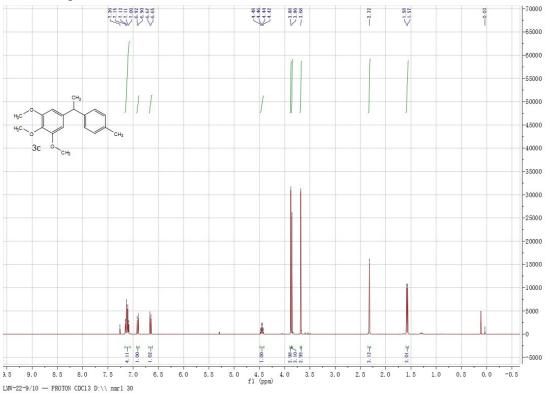
7, C. Yi, R. Hua , H. Zeng, *Catal Commun,* **2008**, *9*, 85.


8, S. Lindner, S. Braese, *RSC Advances*, **2014**, *4*, 29439.

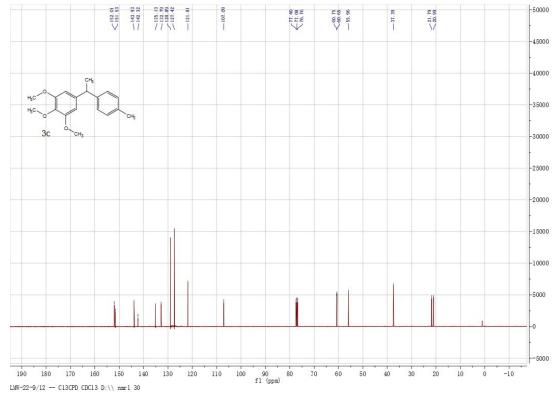

3. NMR spectra

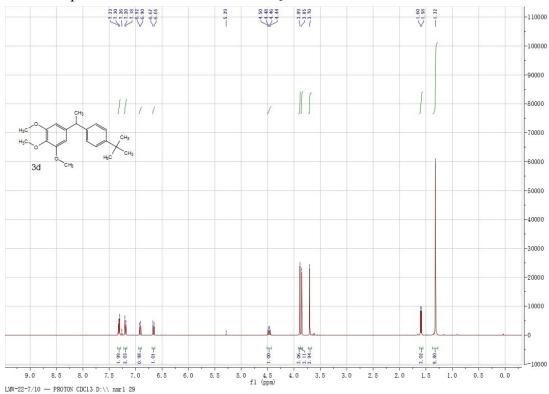
¹H NMR spectrum of 3a recorded in CDCl₃


 ^{13}C NMR spectrum of 3a recorded in CDCl_3

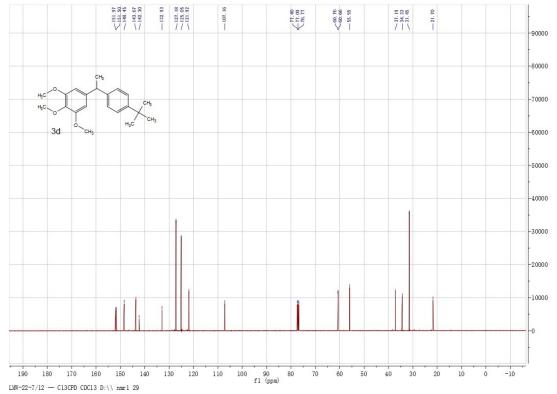


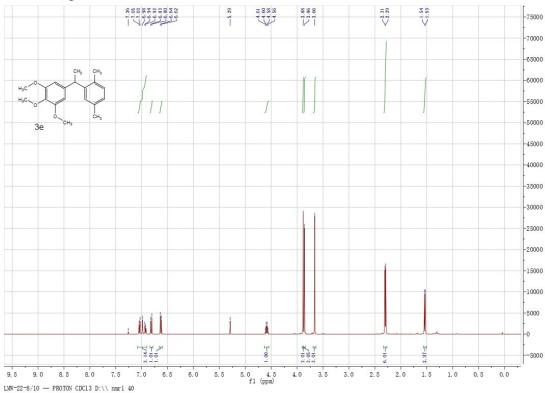
¹H NMR spectrum of **3b** recorded in CDCl₃


¹³C NMR spectrum of **3b** recorded in CDCl₃

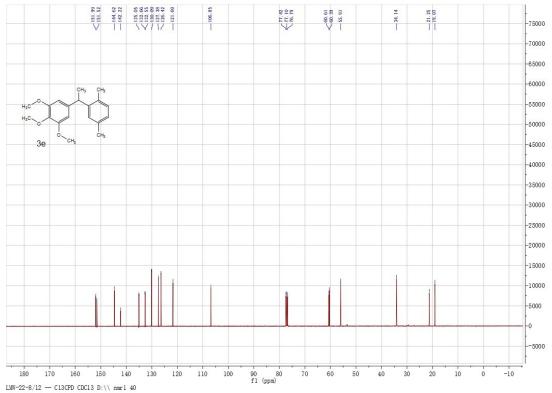


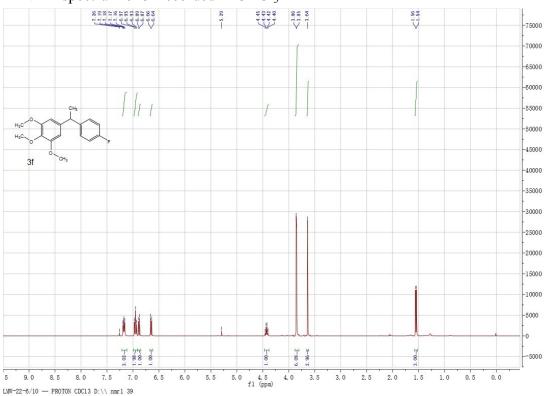
¹H NMR spectrum of **3c** recorded in CDCl₃


 ^{13}C NMR spectrum of 3c recorded in CDCl_3

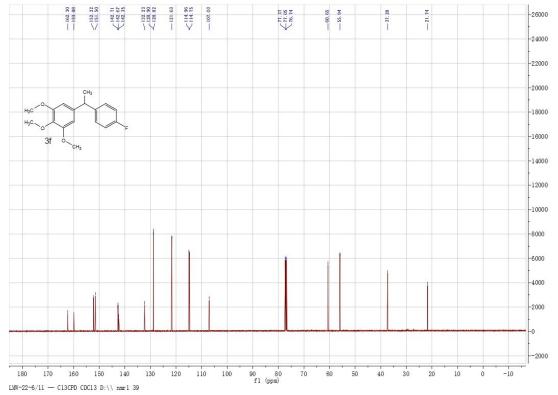


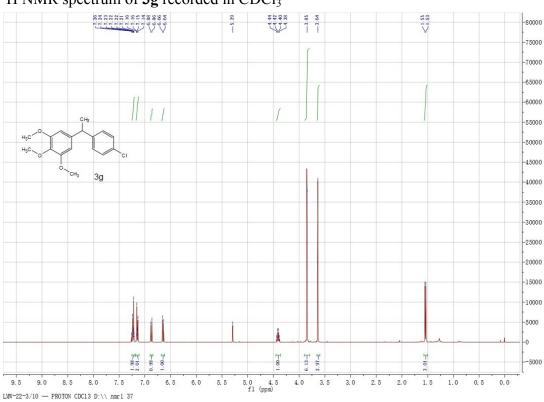
¹H NMR spectrum of **3d** recorded in CDCl₃


¹³C NMR spectrum of **3d** recorded in CDCl₃

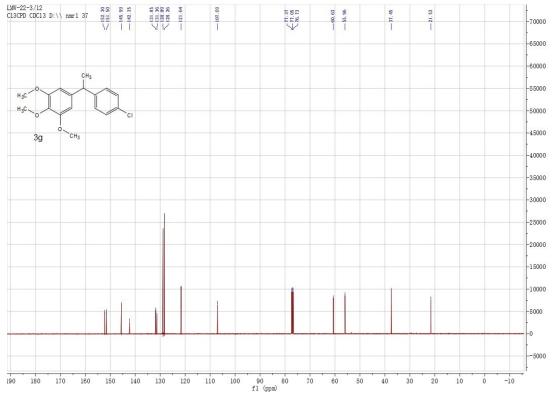


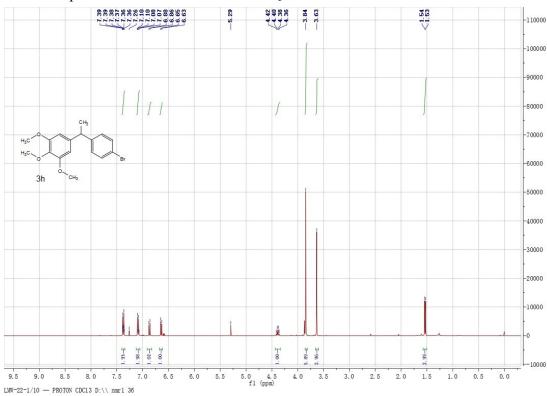
¹H NMR spectrum of 3e recorded in CDCl₃


¹³C NMR spectrum of **3e** recorded in CDCl₃

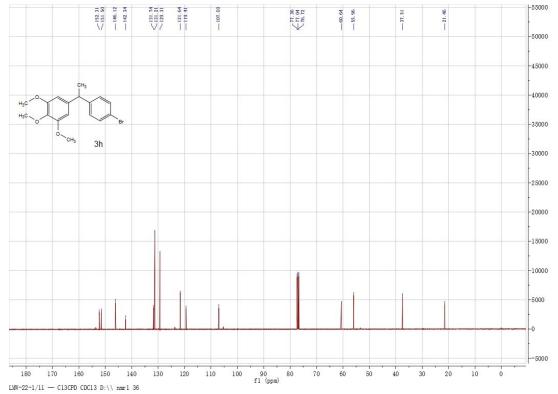


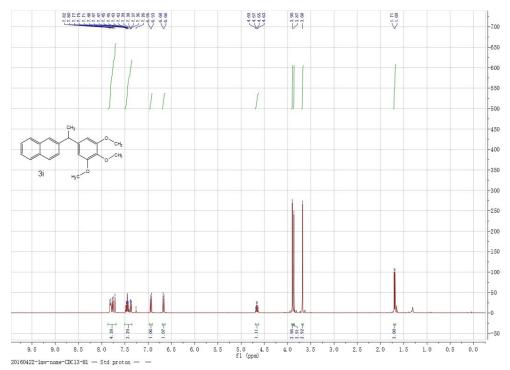
¹H NMR spectrum of 3f recorded in CDCl₃


¹³C NMR spectrum of **3f** recorded in CDCl₃



¹H NMR spectrum of **3g** recorded in CDCl₃

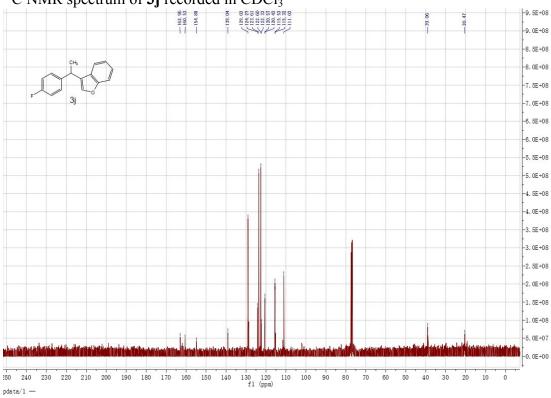

 ^{13}C NMR spectrum of 3g recorded in CDCl_3



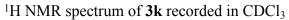
¹H NMR spectrum of **3h** recorded in CDCl₃

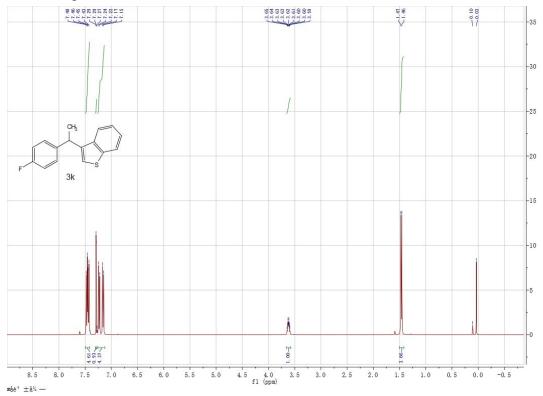
¹³C NMR spectrum of **3h** recorded in CDCl₃

¹H NMR spectrum of **3i** recorded in CDCl₃


Low resolution mass spec for 3k

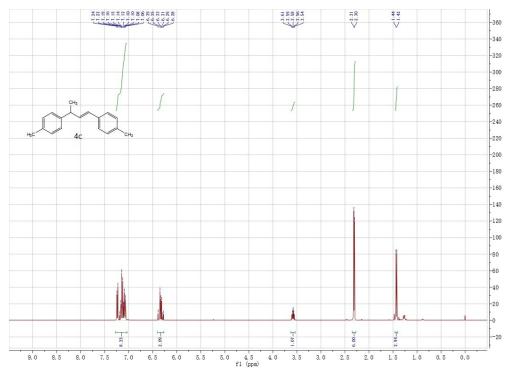
事件号1:Scan	保留时间	[28.645]	扫描数:	[5030]


3												 									 					-		藍峰: 141/	3, 122, 0
1																							n/	1 132.9	5 現村分	13	35, 81	75 相对强	R 1.1
																		. d	33	2									
																		. A.,											
																		1911											
																		3											
																		생자											
																		1											
																		1											
																	291	1	3	13									
		······································	erries.																										
		 1	101		1.1		238		178		202		2	47	261	1				1									
1	· · · ·	 ال ب البيطل	a dia dia	ماله بلكم	م <u>لية يوم</u>	, البتد,	- yely	14	pelle .	10	- the	 the last		Marine Marine	10.	1		and of			 220	200.0	 100			e	124	100	-


¹H NMR spectrum of **3j** recorded in CDCl₃

¹³C NMR spectrum of **3j** recorded in CDCl₃

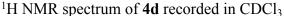
Low resolution mass spec for 3k

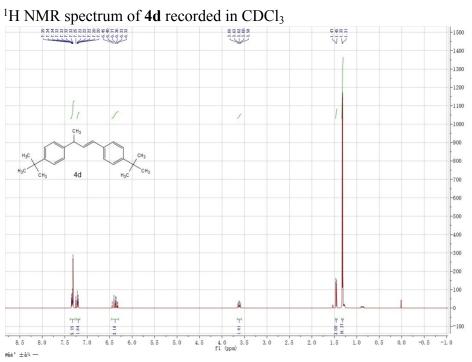

										24	11						m/z	114.00	绝对强度	130, 17	4 相对强度	1.5
į												206										
										heren												
									-													
1				 0	128		19	6	221		. And											
6	45	63	88	 1.		161		T.			1 8	10										

-2.33 L 48 L 48 L 48 -210 1.88 -200 -190 -180 -170 -160 -150 1 1 -140 CH CH3 CH -130 -120 -110 4b -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 Å -0 HE6 F22. 11 00 E --10 188 ý ó 4.5 4.0 fl (ppm) 9.0 8.5 8.0 7.5 7.0 6.5 5. 5 5.0 3. 5 3.0 2.5 2.0 1.5 0.5 0.0 6.0 1.0 æåè°±å¾ —

¹H NMR spectrum of **4b** recorded in CDCl₃

Low resolution mass spec for 4b

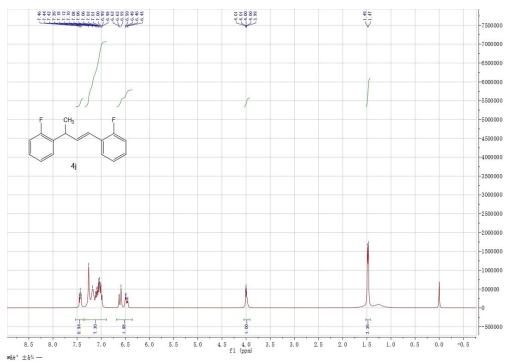

		129										m/z 168.1		13 相对强度	0.
		1													
						21									
		1				236									
	105														
		i. I		1											
The is of the la	. alle die	311 J.	165		in de		 1	307	221	347	877	23 418	469 4	100 0	àn



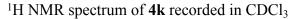
¹H NMR spectrum of **4c** recorded in CDCl₃

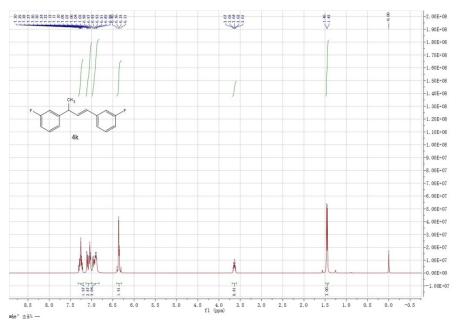
Low resolution mass spec for 4c

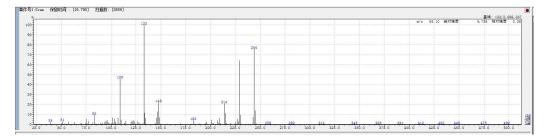
					 129			 		 	 	 	 m/z 237.00	0 把时铺	調 0.
								221							
								1	236						
								1.1							
1								1							
1				105				1							
1			9					1.1							
	39	65	IL I	in the second se		15	192	1100	1						



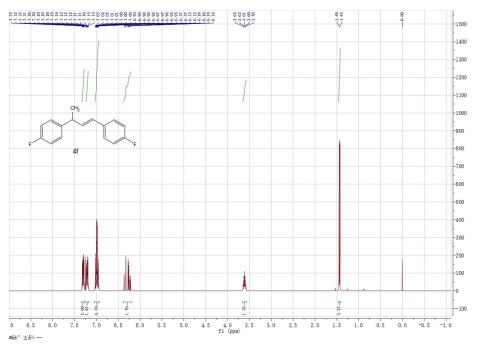
Low resolution mass spec for 4d

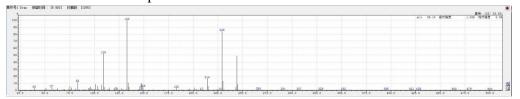

1		57	 			1	 		 		S	 	 	 	m/s	103, 10	绝对强度	545 HERE	·京 1.5
										- 263									
	41			117	1 1	5		207											
				1			 					320							

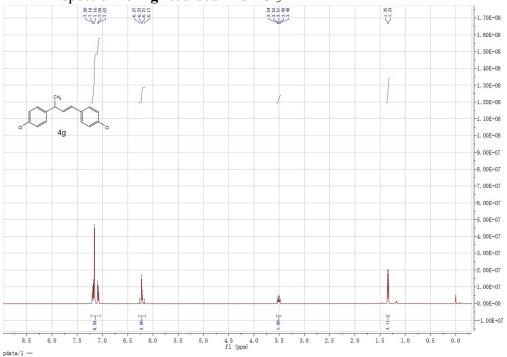

¹H NMR spectrum of **4j** recorded in CDCl₃


Low resolution mass spec for 4j

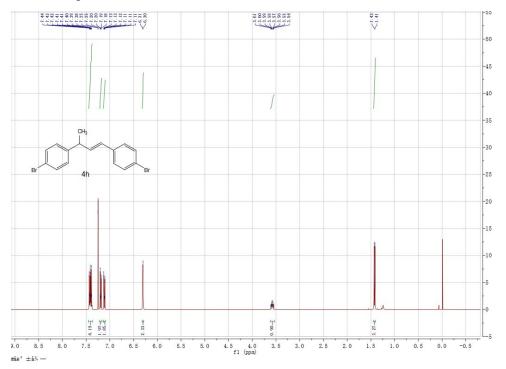
 1				1	229				n/z 202	95 绝对强度	32, 076	相对强度	1.0
	133				1								
109	tere (tere teres)												
1	÷												
	the second second												
					la arrea								
1 1	1												
				214									
63	8												
 T huk		148	183	1.1									




Low resolution mass spec for 4k


¹H NMR spectrum of **4f** recorded in CDCl₃

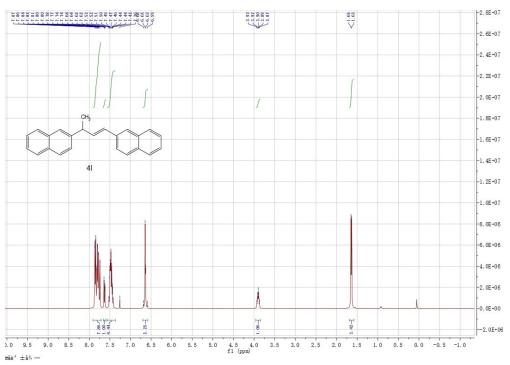
Low resolution mass spec for ${\bf 4f}$



¹H NMR spectrum of **4g** recorded in CDCl₃

Low resolution mass spec for 4g

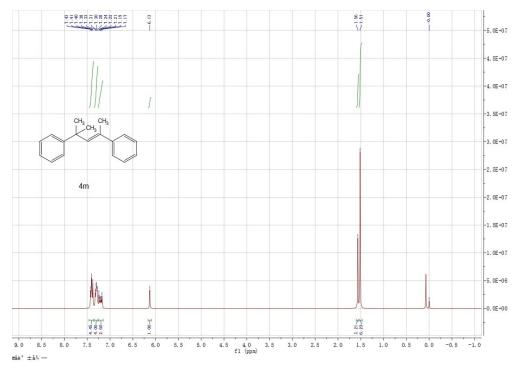
C								2	41				1	 m/s 65.05	9 绝对强度	1,568 相对	现 2.
					49												
					1				1 1	261							
				125	1				1								
			1							2	16						
			101														
		······			1						1						
		13			1	1	206	1									
	39			1. 1.	li, li,		chat 1			Ilu	ll.			 		100	



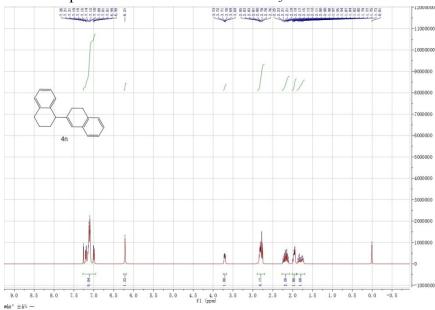
¹H NMR spectrum of **4h** recorded in CDCl₃

Low resolution mass spec for 4h

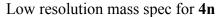
						229		 	 	 	m/z 33.00	 · 相対協 	疲 0.
		109	133										
1		1				1							
		1				1							
		1				1							
		1				1	1						
		1				1			225				
41	83	1 . 1	i	1.1	 								


¹H NMR spectrum of **4**I recorded in CDCl₃

Low resolution mass spec for 41

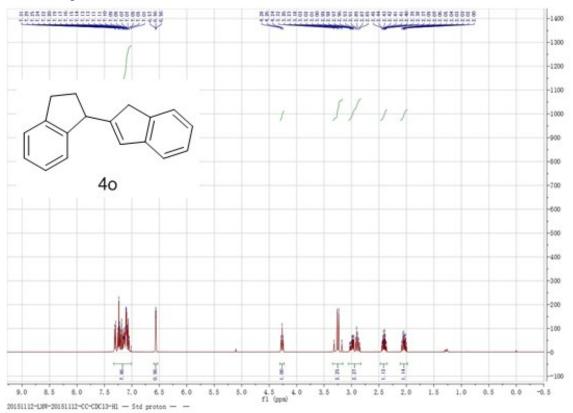

-												0.8		m/ z	91,10	绝对强度	1, 201	相对强度	1.
- i																			
						80													
						[]													
				1	5														
1																			
			141							1	93								
					a na state in														
1			11								- 8	li							
						1				1.	1								
÷			Second Second	S					265	i mi									
81			in I la	r 1.	1		207	1		10									

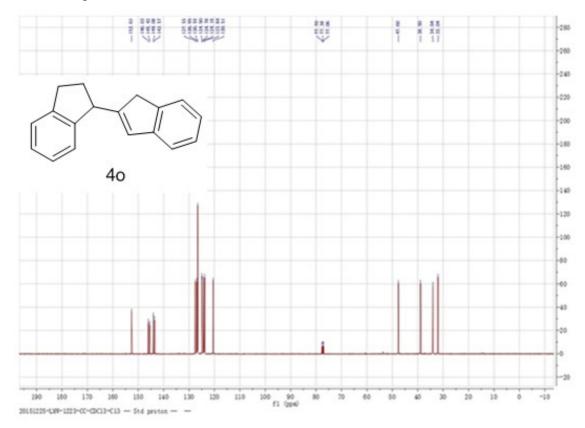
¹H NMR spectrum of **4m** recorded in CDCl₃

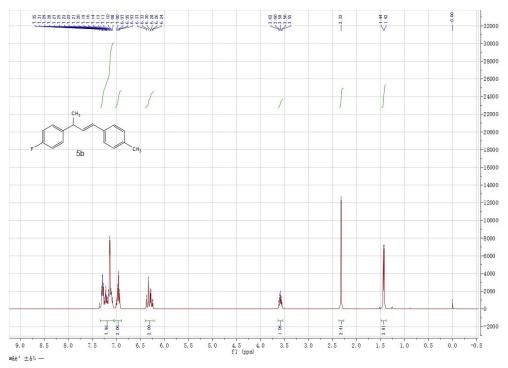


Low resolution mass spec for 4m

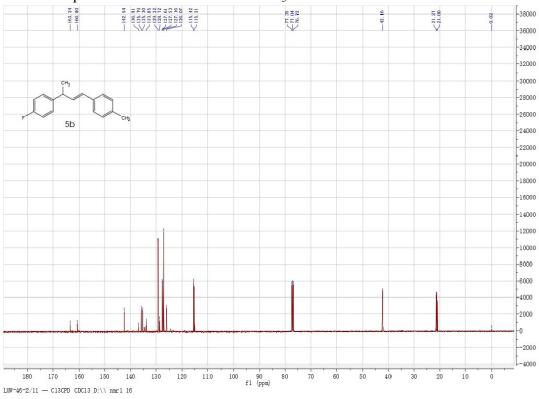
÷																				盖·任: 7	(43/ 49, 6)
			1	13													m/z	206.00	绝对强度	0 相対7	善度 0.0
	1								236												
								21													
		105						1.1													
			-						1												
	······																				
	4. 4.		11	and a second		193		1.000													
	i î î i li l		a	158		4	1	1													
_	ايات حيا التر جات جهان خليا ج	بالل جمالالل عد	البدج بالاللن	بالمرحفن طا	14	. 4111	, utilli,,	<u></u>	<u></u>	263	283	- 304	 343	37	1 386	616	-	426	46	465	422

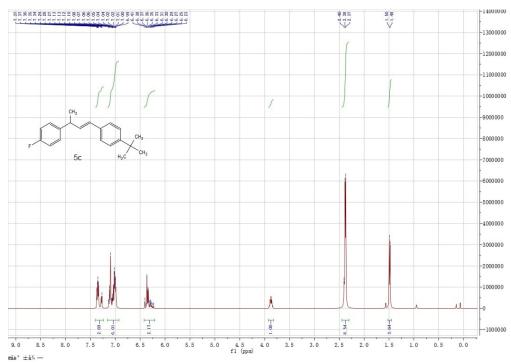


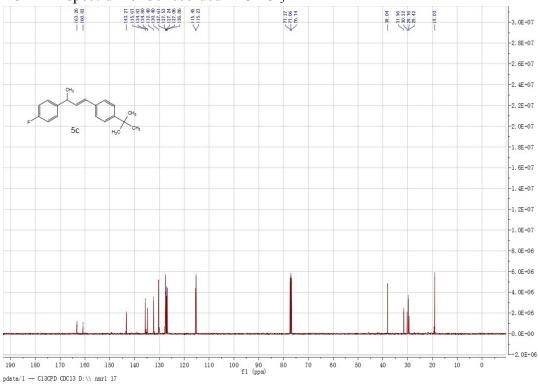

¹H NMR spectrum of **4n** recorded in CDCl₃

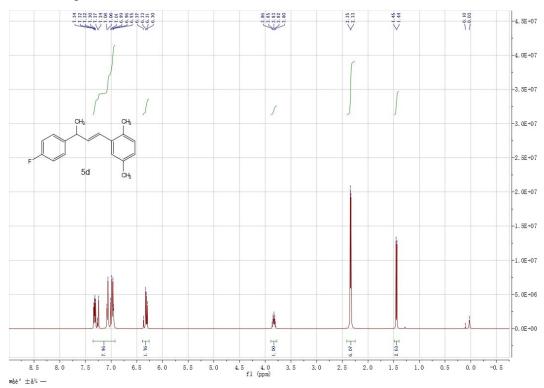

-						_							 									盖線 :	130/4, 5	4, 911, 2
																			z 60.0	20 元月186	π.	82 7	8月18天	0.0
				100																				
				1																				
				- 10																				
												10												
				10																				
			115																					
			1					: 2	17 1															
			1	1				1	2	32														
39	63	1	 Julat Alle 		IL al		189	h	1 L H		diana di	276	 302	33	4	352	376	404	421		460	4	45 5	00

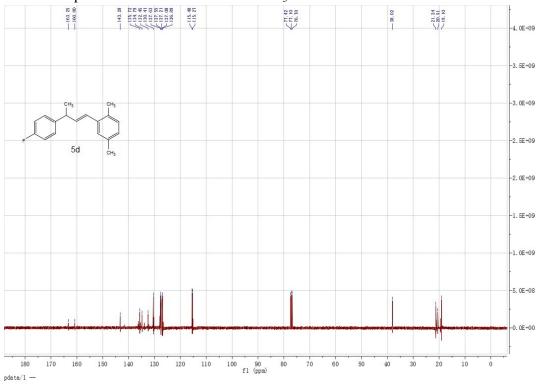
¹H NMR spectrum of **40** recorded in CDCl₃



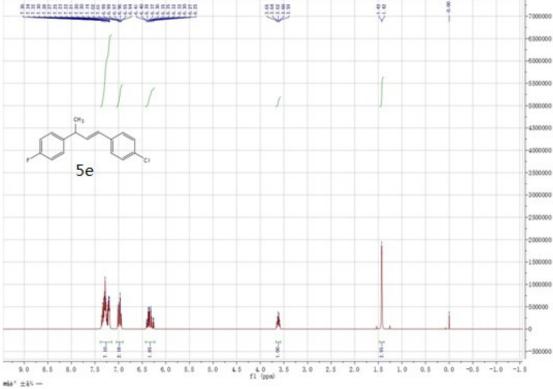

¹³C NMR spectrum of **40** recorded in CDCl₃

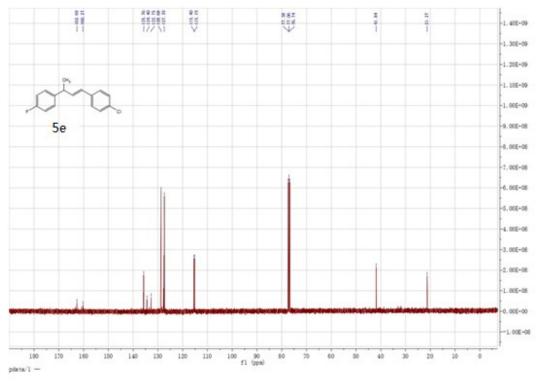

¹H NMR spectrum of **5b** recorded in CDCl₃


¹³C NMR spectrum of **5b** recorded in CDCl₃


¹H NMR spectrum of **5c** recorded in CDCl₃

¹³C NMR spectrum of **5c** recorded in CDCl₃




¹H NMR spectrum of **5d** recorded in CDCl₃

¹³C NMR spectrum of **5d** recorded in CDCl₃

¹³C NMR spectrum of **5e** recorded in CDCl₃