Supporting information

Syntheses, Structures and Magnetic Properties of Symmetrical Schiff-base Supported Dinuclear Ln(III) Compounds

Shuang-Yan Lin, Chunlai Wang* and Zhikun Xu*

Fig. S1 IR spectra of crystalline samples of compounds 1-3.

Fig. S2 Partially labeled crystal structure of the compound 1 with hydrogen atoms omitted for clarity.

Fig. S3 Crystal packing of compound 1 showing the formation of a supramolecular chain along the crystallographic *a* axis, through π - π interactions. The distance Cg5…Cg6 is 3.6569(2) Å.

Fig. S4 Temperature dependence of the in-phase (black) and out-of-phase (red) ac susceptibility for compounds 2 (left) and 3 (right) under zero dc field at 997 Hz.

Fig. S5 Frequency dependence (left) and temperature dependence (right) of the in phase ac susceptibility of compound **3** under 1300 Oe dc field.

Fig. S6 Cole–Cole plots measured under 1300 Oe dc field.

Table S1. The CShM values calculated by *SHAPE* 2.1 for compounds 1-3.

	Coordination	capped square	tricapped	
	number	antiprism	trigonal prism	
Sm1 in compound 1	9	1.689	1.673	
Dy1 in compound 2	9	1.618	1.566	
	Coordination	Square	Biaugmented	Triangular
	number	antiprism	trigonal prism	dodecahedron
Dy1 in compound 3	8	17.744	14.654	15.450

Table S2. Examples of Dy_2 complexes with dialkoxo and dicarboxylato bridging groups exhibiting slow relaxation of the magnetization.

Dy ₂ complexes with dialkoxo bridging groups							
compounds	symmetry	relaxation process	Ueff/K (H _{dc} /Oe)	Refs.			
$[Dy_2ovph_2Cl_2(MeOH)_3]$	asymmetric	two thermally activated relaxation processes	150, 198	1			
$[Dy_2(ovph)_2(NO_3)_2(H_2O)_2]$	symmetric	one thermally activated relaxation process	69	2			
		QTM process					
$[Dy_2(HL^1)_2(PhCOO)_2(CH_3OH)_2]$	symmetric	single thermally activated relaxation process	94	3			
$[Dy_2(H_2cht)_2Cl_4(H_2O)(MeCN)]$	symmetric	one thermally activated relaxation process	124(2)	4			
		containing QTM process					
$[Dy_2(L^2)_2(NO_3)_4]$	symmetric	slow relaxation of the magnetization	72.45 (1000)	5			
[Dy ₂ (HL ³) ₂ (NO ₃) ₄]	symmetric	one thermally activated relaxation process	41.55	5			
		containing QTM process					
[Dy ₂ (HL) ₂ (PhCOO) ₂ (DMF) ₂]	symmetric	one thermally activated relaxation process	61	6			
		containing QTM process					
[Dy ₂ (H ₄ L') ₂ (PhCOO) ₄] (3)	symmetric	filed-induced slow relaxation of the		present			
		magnetization		work			
Dy ₂ complexes with dicarboxylato bridging groups (η^1 : η^1 - μ_2 coordination mode)							
$[Dy(3-PNO)(Bza)_3(H_2O)]$	symmetric	field-induced slow relaxation of the		7			
		magnetization					
$[Dy(4-PNO)(Bza)_3(H_2O)]$	symmetric	field-induced SMM	24 (1000), 27	7			
			(1500)				
[Dy ₂ (H ₃ L) ₂ (PhCOO) ₆] (2)	symmetric	field-induced slow relaxation of the		present			
		magnetization		work			

"--" indicate that energy barrier cannot be calculated from ac susceptibility.

References

- 1. Y.-N. Guo, G.-F. Xu, W. Wernsdorfer, L. Ungur, Y. Guo, J. Tang, H.-J. Zhang, L. F. Chibotaru and A. K. Powell, J. Am. Chem. Soc., 2011, **133**, 11948-11951.
- 2. Y.-N. Guo, X.-H. Chen, S. Xue and J. Tang, Inorg. Chem., 2011, **50**, 9705-9713.
- 3. P. Zhang, L. Zhang, S.-Y. Lin, S. Xue and J. Tang, Inorg. Chem., 2013, 52, 4587-4592.
- 4. J.-D. Leng, J.-L. Liu, Y. Zheng, L. Ungur, L. Chibotaru, F.-S. Guo and M.-L. Tong, Chem. Commun., 2013, **49**, 158-160.
- 5. Y. Peng, V. Mereacre, A. Baniodeh, Y. H. Lan, M. Schlageter, G. E. Kostakis and A. K. Powell, Inorg. Chem., 2016, 55, 68-74.
- 6. S. Y. Lin, J. F. Wu, C. Wang, L. Zhao and J. K. Tang, Eur. J. Inorg. Chem., 2015, 5488-5494.
- 7. W. H. Zhu, S. Li, C. Gao, X. Xiong, Y. Zhang, L. Liu, A. K. Powell and S. Gao, Dalton Trans., 2016, 45, 4614-4621.