Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Online Information

Enhanced Hydrogenation of Ethyl-levulinate to γ -valerolactone over $Ni^{\delta}O_x$ Stabilized Cu^+ surface sites

Junhua Zhu,^{a,b} Yi Tang,^{*,a} and Kangjian Tang,^{*,b}

Figure.S1 The FFT on a selected nano-particle

Figure.S2 HRTEM image of focused nanoparticle. The lattice with the distance of 0.21nm corresponds to Cu (111) planes . The scaled bar is 2nm.

 $\label{eq:Figure.S3} \ \ \ EDS \ result \ on \ a \ nano-cluster \ of \ Cu(35\%)Ni(4\%)/SiO_2 \ catalyst$

Figure.S4 EDS mappings on (a) 20nm scale and (b)1000nm scale. Each figure Includes HAADF image, Si, Ni, Cu, C and O co

Figure.S5 Cu2p XPS diagram of (a) before and (c) after reduction; Ni2p3/2 XPS diagram of (b) before and (d) after reduction. Seen from (a) and (b), the copper and nickel has fully Cu²⁺ and Ni²⁺, respectively. (c) After reduction by H₂, Cu²⁺ was reduced completely. To deffer Cu⁺ or Cu⁰ remained, auger electronic spectrom (AES) was carried out to detect the state of reduced copper. See the AES result on Figure S4 and Table S1. (d) There has much Ni²⁺ remained even after reduction. One new peak occurred at about 853eV, implying the Ni²⁺ was partly reduced. Comparing to the standard Ni⁰ of 852.3eV. The nickel possessed a state of (0≤δ<2). Series of CuNi/SiO₂ catalysts with different Ni content were showed as different color. black line: Ni(0%), red line: Ni(2%), blue line: Ni(4%), green line: Ni(6%), pink line: Ni(8%). See direct numeral data of Ni2p3/2 XPS on table S2.

Figure.S6 The Cu 2p AES diagrams with different Ni content after reduction. Brown line: base; red line: Cu⁺; blue line: Cu⁰; green line: envelope; black line: real cps.

Catalyst _	KE (eV)		α' (eV)		Х_{Си+}а %	Х_{Си0}^а %
	Cu⁺	Cu⁰	Cu⁺	Cu⁰	_ A Cu+ /0	ACUO 70
Cu-Ni(0%)/SiO ₂	916.0	918.7	1848.4	1850.8	28.35	71.65
Cu-Ni(2%)/SiO ₂	915.6	918.3	1848.3	1851.0	33.46	66.54
Cu-Ni(4%)/SiO ₂	915.7	918.5	1848.0	1850.8	79.19	20.81
Cu-Ni(6%)/SiO ₂	915.7	918.4	1848.3	1851.0	23.33	76.67
Cu-Ni(8%)/SiO ₂	915.5	918.5	1848.3	1851.3	15.06	84.94

 Table S1
 The Cu LMM XAES result of catalysts with different Ni content after reduction

a : Intensity ratio of Cu⁺(or Cu⁰)/(Cu⁺+Cu⁰) by deconvolution of Cu LMM XAES spectra

Catalyst	before reduction	after reduction		
Catalyst	Ni 2p3/2, eV	Ni 2p3/2, eV	Ni 2p3/2, eV	
Cu-Ni(0)/SiO ₂	-	-	-	
Cu-Ni(2%)/SiO ₂	856.7	856.9	852.6	
Cu-Ni(4%)/SiO ₂	855.8	857.4	853.2	
Cu-Ni(6%)/SiO ₂	856.5	857.0	853.0	
Cu-Ni(8%)/SiO ₂	856.7	856.9	852.8	
NiO ^a	853.3	-	-	
Ni ^a	-	-	852.3	

Table S2The Ni 2p3/2 binding energy of catalysts with different Ni content before
and after reduction

a : the binding energy data of NiO and Ni referring to the handbook of XPS

 $\label{eq:Figure.S7} \mbox{ KRD curve of CuNi}^{\delta}O_x/SiO_2 \mbox{ catalyst after 200 hours' reaction.}$

Scheme S1. The proposed reaction pathways of EL hydrogenation.