Asymmetric Mannich Reaction: Highly Enantioselective Synthesis of 3-Amino-oxindoles via Chiral Squaramide Based *H*-bond Donor Catalysis

Kadiyala Srinivasa Rao,^a Pambala Ramesh,^a L. Raju Chowhan^b and Rajiv Trivedi*^a

^a Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, India. E-mail: trivedi@iict.res.in, rtrajiv401@gmail.com; Phone: +91 40 27191667; Fax: +91 40 27160921.

^b School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India.

List of Contents

- 1. General method
- 2. General procedure for the enantioselective Mannich Reactions
- 3. ¹H NMR, ¹³C NMR spectra of products **4a-g** and **5a-p**
- 4. HPLC chromatogram of product 4 and 5
- 5. X-ray structure report for product **5g**

1) General method

All reactions were carried out an inert atmosphere unless otherwise indicated, following standard syringe septa techniques. Chemicals were purchased from Aldrich and used as received. Solvents used for reactions were dried before use according to standard procedures where needed. Product purification by Flash chromatography was carried out with silica gel (60-120 mesh). Technical grade solvents were used for chromatography and distilled prior to use. NMR spectra were recorded in Fourier transform mode. ¹H and ¹³C NMR spectra were recorded with Bruker-Avance 300 MHz, Varian Inova 400 MHz, Varian Inova 400 MHz spectrometers using trimethylsilane as an internal standard in CDCl₃, CD₃OD and DMSO-d₆ solvents. Multiplicities in the ¹H NMR spectra are described as: s = singlet, d = doublet, t = triplet, q = quartet, qt =quintet, m = multiplet, br = broad; coupling constants are reported in Hz. IR spectra were recorded on a Thermo Nicolet Nexus 670 spectrometer and reported in cm⁻¹. Mass spectra were recorded with a Waters 2695 for low (MS) and Thermo Scientific Exactive spectrometer for HRMS. Melting points were recorded on a Toshniwal melting point apparatus. Enantiomeric excesses were determined by using HPLC analysis with Daicel Chiralpak AD-H or IC columns, as indicated. The squaramide organocatalysts $1a-c^{1a,b}$, $1d-e^{1c}$ and $1f-i^{1d}$ were prepared following the literature procedures.

2) General Procedure for the Enantioselective Mannich Reactions

To a solution of ketimine 2 (0.25 mmol) in CH_2Cl_2 (1.5 ml) was added squaramide bifunctional catalyst 1g (5 mg, 0.0075 mmol, 3 mol %) and the mixture was stirred for 5 min under N₂ atmosphere. Then 1,3-dicarbonyl compound 3 (0.3 mmol) was added to the mixture. Upon consumption of ketimine substrate (monitored by TLC), the reaction mixture was concentrated and purified by silica gel column chromatography to afford the conjugate addition products 4 (or) 5.

Compound 4a: White solid; Yield 99%; $[\alpha]^{30}_{D} = -11.6$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3427, 2924, 1732, 1711, 1614, 1493, 1367, 1258, 1160, 1088, 1023, 752; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.34-7.25 (m, 2H), 7.02 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.49 (s, 1H), 4.09 (s, 1H), 3.24 (s, 3H), 2.29 (s, 3H), 2.17 (s, 3H), 1.26 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.7, 201.3, 174.0, 153.7, 143.3, 129.6, 128.1, 123.5, 122.8, 108.4, 80.3, 68.4, 62.6, 32.2, 32.1, 28.0, 26.5; ESI-MS: m/z: 383 (M+Na)⁺, HR-MS calcd for C₁₉H₂₄N₂O₅Na: 383.1577 [M+Na]⁺, found: 383.1571; HPLC (IC, 20% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{maior} = 24.1 min, t_{minor} = 19.7 min, >99% ee.

Compound 4b: White solid; Yield 90%; $[\alpha]^{30}_{D} = +6.5$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3363, 2975, 1725, 1669, 1620, 1472, 1398, 1363, 1165, 1060, 757; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 8.50 (s, 1H), 7.29-7.16 (m, 2H), 6.98 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 7.5 Hz, 1H), 6.73 (s, 1H), 4.12 (s, 1H), 2.34 (s, 3H), 2.16 (s, 3H), 1.32 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.3, 201.0, 175.8, 154.0, 140.6, 129.5, 123.8, 122.8, 110.6, 80.7, 67.8, 63.1, 32.5, 32.4,

28.1; ESI-MS: m/z: 369 (M+Na)⁺, HR-MS calcd for $C_{18}H_{22}N_2O_5Na$: 369.1421 [M+Na]⁺, found: 369.1410; HPLC (IC, 20% iPrOH in Hexanes, 1 mL/min, 254 nm): $t_{major} = 11.3 \text{ min}, t_{minor} = 14.1 \text{ min}, 86\%$ ee.

Compound 4c: White solid; Yield 92%; $[\alpha]^{30}_{D} = -29.7$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3411, 2978, 1716, 1611, 1488, 1467, 1363, 1279, 1248, 1164, 755; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.33-7.27 (m, 2H), 7.01 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.39 (s, 1H), 4.13 (s, 1H), 3.96-3.84 (m, 1H), 3.72-3.60 (m, 1H), 2.26 (s, 3H), 2.19 (s, 3H), 1.33-1.24 (m, 12H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.6, 201.5, 173.6, 153.8, 142.5, 129.5, 128.4, 123.9, 122.6, 108.5, 80.4, 68.5, 62.5, 35.1, 32.2, 32.1, 29.6, 28.1, 12.3; ESI-MS: m/z: 397 (M+Na)⁺, HR-MS calcd for C₂₀H₂₆N₂O₅Na: 397.1734 [M+Na]⁺, found: 397.1721; HPLC (IC, 30% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 14.1 min, t_{minor} = 9.2 min, 92% ee.

Compound 4d: White solid; Yield 96%; $[\alpha]^{30}_{D} = -9.3$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3383, 2974, 1730, 1708, 1613, 1496, 1362, 1278, 1249, 1165, 748; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.41 (d, J = 7.6 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 7.7 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.72 (d, J = 7.7 Hz, 1H), 6.58 (s, 1H), 5.05 (d, J = 15.1 Hz, 1H), 4.83 (s, 1H), 4.07 (s, 1H), 2.31 (s, 3H), 2.16 (s, 3H), 1.31 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.6, 201.3, 174.2, 153.8, 142.5, 135.5, 129.4, 128.7, 127.6. 127.5, 123.6, 122.9, 109.5, 80.4, 68.5, 62.7, 44.3, 32.3, 32.2, 28.1; ESI-MS: m/z: 459 (M+Na)⁺, HR-MS calcd for C₂₅H₂₈N₂O₅Na: 459.1890 [M+Na]⁺, found: 459.1875; HPLC (IC, 5% iPrOH in Hexanes, 0.5 mL/min, 210 nm): t_{major} = 105.6 min, t_{minor} = 98.3 min, 99% ee.

Compound 4e: White solid; Yield 85%; $[\alpha]^{30}_{D} = -6.6$ (c = 0.1 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3404, 2979, 1766, 1708, 1471, 1368, 1337, 1273, 1168, 759; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 8.24 (d, J = 8.2 Hz, 1H), 7.36 (t, J = 7.4, 8.2 Hz, 1H), 7.26 (d, J = 7.4 Hz, 1H), 7.18 (t, J = 7.4, 7.6 Hz, 1H), 6.64 (s, 1H), 4.05 (s, 1H), 2.70 (s, 3H), 2.24 (s, 3H), 2.18 (s, 3H), 1.26 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.8, 200.7, 175.0, 170.6, 153.6, 140.0, 130.0, 127.5, 125.4, 122.5, 116.8, 81.2, 69.5, 63.0, 32.1, 32.0, 27.9, 26.6; ESI-MS: m/z: 411 (M+Na)⁺, HR-MS calcd for C₂₀H₂₄N₂O₆Na: 411.1532 [M+Na]⁺, found: 411.1518; HPLC (IC, 20% iPrOH in Hexanes, 1 mL/min, 225 nm): t_{major} = 6.8 min, t_{minor} = 10.3 min, 33% ee.

Compound 4f: White solid; Yield 91%; $[\alpha]^{30}_{D} = -36.8$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3448, 2986, 1729, 1710, 1611, 1490, 1363, 1276, 1168, 756; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.33-7.22 (m, 2H), 7.01 (t, J = 7.3, 7.5 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.47 (s, 1H), 5.98-5.81 (m, 1H), 5.38 (d, J = 16.4 Hz, 1H), 5.26 (d, J = 10.3 Hz, 1H), 4.50 (d, J = 15.3 Hz, 1H), 4.23 (d, J = 14.7 Hz, 1H), 4.12 (s, 1H), 2.27 (s, 3H), 2.19 (s, 3H), 1.29 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.6, 201.4, 173.8, 153.8, 142.5, 131.2, 129.4, 128.1, 123.7, 122.8, 117.8, 109.3, 80.4, 68.4, 62.6, 42.7, 32.3, 32.1, 28.1; ESI-MS: m/z: 409 (M+Na)⁺, HR-MS calcd for C₂₁H₂₆N₂O₅Na: 409.0716 [M+Na]⁺, found: 409.0678; HPLC (IC, 15% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 23.2 min, t_{minor} = 18.9 min, 96% ee.

Compound 4g: White solid; Yield 93%; $[\alpha]^{30}_{D} = -43.6$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3440, 3266, 2978, 1730, 1710, 1612, 1489, 1363, 1278, 1259, 1168, 764, 707; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.36-7.29 (m, 2H), 7.09-7.04 (m, 2H), 6.50 (s, 1H), 4.81 (dd, J = 2.4, 17.7 Hz, 1H), 4.27 (dd, J = 2.4, 17.7 Hz, 1H), 4.13 (s, 1H), 2.30 (t, J = 2.4 Hz, 1H), 2.29 (s, 3H), 2.18 (s, 3H), 1.28 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.1, 173.1, 153.8, 141.4, 129.6, 128.0, 124.0, 123.3, 109.4, 80.5, 76.6, 72.6, 68.1, 62.5, 32.3, 32.1, 29.7, 28.0; ESI-MS: m/z: 407 (M+Na)⁺, HR-MS calcd for C₂₁H₂₄N₂O₅Na: 407.1577 [M+Na]⁺, found: 407.1560; HPLC (IC, 20% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 17.1 min, t_{minor} = 15.5 min, 98% ee.

Compound 5a: White solid; Yield 94%; $[\alpha]^{30}_{D} = -13.8$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3408, 2925, 1718, 1614, 1498, 1361, 1255, 1164, 1098, 1059, 812, 756; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.13-7.06 (m, 2H), 6.72 (d, J = 7.9 Hz, 1H), 6.51 (s, 1H), 4.07 (s, 1H), 3.22 (s, 3H), 2.30 (s, 6H), 2.17 (s, 3H), 1.27 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.8, 201.4, 174.0, 153.8, 141.0, 132.5, 129.8, 128.2, 124.3, 108.2, 80.3, 68.6, 62.7, 32.2, 32.1, 29.6, 28.0, 26.6, 21.1; ESI-MS: m/z: 397 (M+Na)⁺; HPLC (IC, 30% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 22.0 min, t_{minor} = 15.0 min, 96% ee.

Compound 5b: White solid; Yield 97%; $[\alpha]^{30}_{D} = -23.2$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3421, 2925, 1727, 1604, 1497, 1463, 1362, 1286, 1164, 1123, 1033, 809; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 6.95-6.78 (m, 2H), 6.73 (d, J = 8.5 Hz, 1H), 6.50 (s, 1H), 4.09 (s, 1H), 3.76 (s, 3H), 3.22 (s, 3H), 2.30 (s, 3H), 2.18 (s, 3H), 1.28 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.5, 201.2, 173.7, 156.1, 153.7, 136.7, 129.4, 113.8, 111.1, 108.8, 80.3, 68.4, 63.0, 55.8, 32.2, 32.0, 29.6, 28.0, 26.6; ESI-MS: m/z: 413 (M+Na)⁺; HPLC (IC, 30% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 33.2 min, t_{minor} = 16.2 min, 96% ee.

Compound 5c: White solid; Yield 92%; $[\alpha]^{30}_{D} = -16.5$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3431, 2981, 1735, 1707, 1622, 1495, 1361, 1275, 1164, 1123, 1059, 1022, 865, 814; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.10 (dd, J = 2.6, 7.9 Hz, 1H), 7.04-6.98 (m, 1H), 6.76 (dd, J = 4.1, 8.5 Hz, 1H), 6.43 (s, 1H), 4.12 (s, 1H), 3.24 (s, 3H), 2.30 (s, 3H), 2.19 (s, 3H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.2, 201.1, 173.8, 160.1, 158.2, 153.7, 139.4, 115.9, 115.7, 112.3, 112.1, 109.0, 80.6, 68.2, 62.7, 32.3, 31.9, 28.0, 26.7; ESI-MS: m/z: 401 (M+Na)⁺; HPLC (IC, 30% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 12.3 min, t_{minor} = 9.0 min, 95% ee.

Compound 5d: White solid; Yield 95%; $[\alpha]^{30}_{D} = -36.6$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3407, 2924, 1737, 1703, 1610, 1487, 1423, 1359, 1267, 1168, 1055, 1022, 819; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.33-7.25 (m, 2H), 6.77 (d, J = 9.1 Hz, 1H), 6.46 (s, 1H), 4.10 (s, 1H), 3.23 (s, 3H), 2.30 (s, 3H), 2.19 (s, 3H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.1, 173.6, 153.6, 142.0, 129.7, 129.5, 128.2, 124.3, 109.4, 80.6, 68.2, 62.4, 32.2, 32.0, 28.0, 26.6; ESI-MS: m/z: 417 (M+Na)⁺; HPLC (IC, 30% iPrOH in Hexanes, 1 mL/min, 230 nm): t_{major} = 12.1 min, t_{minor} = 8.5 min, 95% ee.

Compound 5e: White solid; Yield 91%; $[\alpha]^{30}_{D} = -36.4$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3403, 2980, 1736, 1694, 1607, 1487, 1423, 1357, 1266, 1167, 1055, 1022, 818; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.46-7.40 (m, 2H), 6.72 (d, J = 8.7 Hz, 1H), 6.45 (s, 1H), 4.09 (s, 1H), 3.23 (s, 3H), 2.30 (s, 3H), 2.19 (s, 3H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.2, 201.1, 173.5, 153.7, 142.5, 132.4, 130.1, 127.0, 115.5, 110.0, 80.7, 68.3, 62.4, 32.3, 32.0, 28.0, 26.7; ESI-MS: m/z: 463 (M+Na)⁺; HPLC (IC, 30% iPrOH in Hexanes, 1 mL/min, 230 nm): t_{major} = 12.6 min, t_{minor} = 8.7 min, 95% ee.

Compound 5f: White solid; Yield 93%; $[\alpha]^{30}_{D} = -39.7$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3389, 2977, 1738, 1689, 1603, 1483, 1421, 1357, 1262, 1168, 1055, 1022, 816; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.63 (dd, J = 1.6, 8.1 Hz, 1H), 7.57 (d, J = 1.6 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 6.45 (s, 1H), 4.06 (s, 1H), 3.22 (s, 3H), 2.29 (s, 3H), 2.19 (s, 3H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.2, 201.1, 173.3, 153.6, 143.2, 138.4, 132.3, 130.3, 110.5, 85.2, 80.7, 68.2, 62.2, 32.3, 32.0, 29.6, 28.0, 26.6; ESI-MS: m/z: 509 (M+Na)⁺; HPLC (IC, 20% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 21.4 min, t_{minor} = 15.3 min, 95% ee.

Compound 5g: White solid; Yield 99%; $[\alpha]^{30}_{D} = +22.7$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3413, 2924, 1738, 1706, 1604, 1459, 1361, 1252, 1167, 1107, 1055, 1024, 775; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.41 (d, J = 8.2 Hz, 1H), 7.19 (d, J = 7.4 Hz, 1H), 6.86 (t, J = 7.3, 8.2 Hz, 1H), 6.57 (s, 1H), 4.02 (s, 1H), 3.62 (s, 3H), 2.29 (s, 3H), 2.16 (s, 3H), 1.29 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.4, 200.8, 174.6, 153.6, 140.6, 135.2, 131.4, 124.0, 122.4, 102.8, 80.7, 68.2, 62.2, 32.5, 31.8, 30.2, 29.6, 29.3, 28.0; ESI-MS: m/z: 463 (M+Na)⁺; HPLC (IC, 40% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 11.6 min, t_{minor} = 9.9 min, 96% ee.

Compound 5h: White solid; Yield 89%; $[\alpha]^{30}_{D} = +37.1$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3415, 2977, 1736, 1613, 1520, 1492, 1335, 1297, 1165, 1114, 1070, 755; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 8.34-8.18 (m, 2H), 6.93 (d, J = 8.6 Hz, 1H), 6.45 (s, 1H), 4.15 (s, 1H), 3.32 (s, 3H), 2.28 (s, 3H), 2.23 (s, 3H), 1.31 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.1, 200.8, 174.5, 153.7, 149.3, 143.5, 133.0, 132.1, 128.5, 126.7, 119.7, 108.0, 81.2, 68.4, 61.8, 32.1, 31.8, 28.1, 27.0; ESI-MS: m/z: 428 (M+Na)⁺; HPLC (IC, 30% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 15.4 min, t_{minor} = 9.8 min, 92% ee.

Compound 5i: White solid; Yield 98%; $[\alpha]^{30}_{D} = -18.6$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3412, 2925, 1721, 1620, 1495, 1362, 1255, 1218, 1162, 1059, 1026, 758; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.24-7.16 (m, 2H), 6.82 (d, J = 8.4 Hz, 1H), 6.44 (s, 1H), 4.11 (s, 1H), 3.25 (s, 3H), 2.28 (s, 3H), 2.18 (s, 3H), 1.29 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.1, 201.0, 174.0, 153.7, 144.7, 142.2, 129.5, 122.8, 118.1, 109.0, 80.8, 68.0, 62.5, 32.2, 32.0, 31.8, 29.6, 29.3, 28.0, 26.7; ESI-MS: m/z: 467 (M+Na)⁺; HPLC (IC, 40% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{maior} = 6.3 min, t_{minor} = 5.4 min, 97% ee.

Compound 5j: White solid; Yield 78%; $[\alpha]^{30}_{D} = +8.9$ (c = 0.1 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3362, 2924, 1721, 1694, 1601, 1508, 1454, 1350, 1319, 1254, 1154, 1114, 1039, 805; ¹H-NMR

(300 MHz, CDCl₃), δ (ppm) 7.16 (d, J = 8.7 Hz, 1H), 6.85 (d, J = 8.8 Hz, 1H), 6.36 (s, 1H), 4.47 (s, 1H), 3.63 (s, 3H), 2.31 (s, 3H), 2.08 (s, 3H), 1.29 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 203.3, 202.0, 173.6, 153.0, 142.3, 133.1, 128.0, 124.0, 114.6, 80.7, 66.0, 62.6, 32.2, 31.8, 31.4, 30.1, 29.6, 29.3, 28.0; ESI-MS: m/z: 451 (M+Na)⁺; HPLC (IC, 35% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 12.8 min, t_{minor} = 9.6 min, 94% ee.

Compound 5k: White solid; Yield 90%; $[\alpha]^{30}_{D} = -23.7$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3291, 2924, 1755, 1725, 1613, 1523, 1466, 1381, 1244, 1163, 1015, 751; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.37 (d, J = 7.3 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.32 (s, 1H), 3.96 (s, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 3.25 (s, 3H), 1.27 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 173.8, 166.3, 166.0, 153.7, 144.0, 129.6, 127.6, 123.8, 122.6, 108.2, 80.3, 60.7, 55.2, 53.0, 28.0, 26.6; ESI-MS: m/z: 415 (M+Na)⁺; HPLC (IC, 30% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 18.4 min, t_{minor} = 13.9 min, 97% ee.

Compound 51: White solid; Yield 93%; $[\alpha]^{30}_{D} = -23.5$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3433, 2981, 1724, 1682, 1610, 1451, 1372, 1348, 1287, 1246, 1162, 1026, 758, 692; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.87 (d, J = 7.3 Hz, 2H), 7.68 (d, J = 7.3 Hz, 2H), 7.56-7.51 (m, 1H), 7.48 (t, J = 7.3, 7.4 Hz, 2H), 7.41 (t, J = 7.4, 8.2 Hz, 2H), 7.35 (t, J = 7.4, 8.2 Hz, 2H), 7.27-7.23 (m, 1H), 6.96 (t, J = 8.1 Hz, 1H), 6.79 (s, 1H), 6.75 (d, J = 7.6 Hz, 1H), 5.87 (s, 1H), 2.98 (s, 3H), 1.26 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 192.5, 192.2, 174.2, 153.8, 143.0, 136.6, 136.4, 133.7, 129.2, 128.8, 128.6, 128.4, 125.4, 122.8, 108.1, 80.1, 63.8, 57.1, 29.6, 28.0, 26.1; ESI-MS: m/z: 507 (M+Na)⁺; HPLC (AD-H, 30% iPrOH in Hexanes, 1 mL/min, 254 nm): t_{major} = 10.2 min, t_{minor} = 9.2 min, 96% ee.

Compound 5m: White solid; Yield 91%; $[\alpha]^{30}_{D} = -25.5$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3428, 2925, 1710, 1609, 1491, 1370, 1341, 1280, 1158, 1055, 1027, 765; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.39 (d, J = 7.3 Hz, 0.5H), 7.31 (t, J = 7.7 Hz, 1.5H), 7.02 (t, J = 7.7 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.36 (s, 0.5H), 6.29 (s, 0.5H), 4.08 (s, 0.5H), 3.96 (s, 0.5H), 3.71 (s, 1.5H), 3.68 (s, 1.5H), 3.25 (s, 1.5H), 3.24 (s, 1.5H), 2.26 (s, 1.5H). 2.17 (s, 1.5H), 1.27 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 200.0, 174.1, 166.5, 153.6, 143.9, 129.6, 127.8, 123.9, 122.7, 108.3, 80.3, 61.6, 60.4, 52.9, 32.1, 31.1, 29.6, 28.0, 26.6; ESI-MS: m/z: 399 (M+Na)⁺; HPLC (IC, 30% iPrOH in Hexanes, 1.0 mL/min, 254 nm): major diastereomer: t_{major} = 28.5 min, t_{minor} = 15.6 min, 97% ee, minor diastereomer: t_{major} = 34.1 min, t_{minor} = 17.3 min, 95% ee.

Compound 5n: White solid; Yield 95%; $[\alpha]^{30}_{D} = -40.1$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3415, 2978, 1722, 1612, 1494, 1369, 1250, 1166, 1093, 1022, 755; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.42 (d, J = 7.4 Hz, 0.5H), 7.31 (dd, J = 7.9, 16.6 Hz, 1.5H), 7.02 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.42 (s, 0.5H), 6.34 (s, 0.5H), 4.17-4.09 (m, 2.5H), 3.97 (s, 0.5H), 3.24 (s, 3H), 2.27 (s, 1.5H), 2.18 (s, 1.5H), 1.26 (s, 9H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 200.6, 174.0, 166.0, 153.5, 144.0, 129.5, 128.0, 123.8, 122.5, 108.1, 80.1, 62.0, 60.6, 32.0, 31.0, 29.5, 28.0, 26.4, 13.7; ESI-MS: m/z: 413 (M+Na)⁺; HPLC (AD-H, 5% iPrOH in

Hexanes, 1.0 mL/min, 254 nm): major diastereomer: $t_{major} = 54.7 \text{ min}$, $t_{minor} = 52.7 \text{ min}$, 99% ee, minor diastereomer: $t_{major} = 40.9 \text{ min}$, $t_{minor} = 29.7 \text{ min}$, 97% ee.

Compound 50: White solid; Yield 92%; $[\alpha]^{30}_{D} = -48.2$ (c = 0.4 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3433, 2980, 1715, 1611, 1498, 1368, 1282, 1253, 1162, 1130, 1025, 756; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.46 (d, J = 7.5 Hz, 0.5H), 7.35 (d, J = 7.5 Hz, 0.5H), 7.30 (t, J = 7.7 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.36 (s, 0.5H), 6.26 (s, 0.5H), 3.97 (s, 0.5H), 3.86 (s, 0.5H), 3.24 (s, 3H), 2.28 (s, 1.5H), 2.21 (s, 1.5H), 1.31 (s, 9H), 1.27 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 201.3, 174.1, 164.9, 153.6, 143.9, 129.4, 124.6, 124.0, 122.6, 122.5, 108.1, 83.4, 80.2, 63.0, 62.3, 61.7, 31.6, 30.8, 28.1, 27.5, 26.5; ESI-MS: m/z: 441 (M+Na)⁺; HPLC (IC, 25% iPrOH in Hexanes, 1.0 mL/min, 254 nm): major diastereomer: t_{major} = 23.5 min, t_{minor} = 12.4 min, 89% ee, minor diastereomer: t_{major} = 31.2 min, t_{minor} = 17.1 min, 90% ee.

Compound 5p: White solid; Yield 96%; $[\alpha]^{30}_{D} = -62.7$ (c = 0.5 in CHCl₃); IR (KBr) v_{max} (cm⁻¹) 3403, 2925, 1713, 1674, 1611, 1455, 1353, 1254, 1171, 1025, 754, 691; ¹H-NMR (300 MHz, CDCl₃), δ (ppm) 7.76 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.26-7.23 (m, 1H), 7.18 (d, J = 7.4 Hz, 1H), 7.03 (s, 1H), 6.91 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 4.80 (s, 1H), 3.12 (s, 3H), 2.37 (s, 3H), 1.27 (s, 9H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 200.9, 194.1, 173.9, 153.7, 143.1, 136.5, 134.2, 129.4, 128.8, 128.6, 123.9, 122.8, 108.2, 80.3, 63.5, 31.3, 28.0, 26.4; ESI-MS: m/z: 445 (M+Na)⁺; HPLC (IC, 25% iPrOH in Hexanes, 1.0 mL/min, 254 nm): major diastereomer: t_{major} = 35.8 min, t_{minor} = 15.7 min, 95% ee, minor diastereomer: t_{major} = 13.0 min, t_{minor} = 11.6 min, 82% ee.

References:

1) (a) J. P. Malerich, K. Hagihara and V. H. Rawal, *J. Am. Chem. Soc.*, 2008, **130**, 14416; (b) W. Yang and D. -M. Du, *Org. Lett.*, 2010, **12**, 5450; (c) K. S. Rao, R. Trivedi and M. L. Kantam, *Synlett*, 2015, **26**, 221; (d) K. S. Rao, P. Ramesh, R. Trivedi and M. L. Kantam, *Tetrahedron Lett.*, 2016, **57**, 1227.

3) ¹H NMR, ¹³C NMR spectra of products 4a-g and 5a-p

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

4) HPLC spectra of product 4 and 5

Totals			
	84945780	100.00	1460293

PK #	Retention Time	Area	Area Percent	Height
1	11.381	104133881	92.89	3687906
2	14.091	7969189	7.11	253536
Totals				
		112103070	100.00	3941442

Pk #	Retention Time	Area	Area Percent	Height
1	9.195	70559858	50.87	4059689
2	14.091	68133701	49.13	2323158
Totals				
		138693559	100.00	6382847

3: 254 nm,	8	nm

<i>J</i> . <i>2J</i> + mii, 0 mii				
Pk #	Retention Time	Area	Area Percent	Height
1	9.248	1887166	4.15	116785
2	14.123	43626059	95.85	1476354
Totals				
		45513225	100.00	1593139

Retention Time	Area	Area Percent	Height
93.579	132342715	49.90	666735
102.965	132888471	50.10	576540
	265231186	100.00	1243275
	Retention Time 93.579 102.965	Retention Time Area 93.579 132342715 102.965 132888471 265231186	Retention Time Area Area Percent 93.579 132342715 49.90 102.965 132888471 50.10 265231186 100.00

1: 210 nm, 8 nm

Pk #	Retention Time	Area	Area Percent	Height
1	98.368	798969	0.54	6056
2	105.621	147033369	99.46	629449
Totals				
		147832338	100.00	635505

Totals			
	167881644	100.00	2730205

Pk #	Retention Time	Area	Area Percent	Height
1	16.203	7289824	1.99	242188
2	33.227	359356069	98.01	2997645
Totals				
		366645893	100.00	3239833

2:230	nm,	8	nm
-------	-----	---	----

Pk #	Retention Time	Area	Area Percent	Height
1	8.661	35415666	54.04	2196729
2	12.832	30119066	45.96	1230810
Totals				
		65534732	100.00	3427539

2: 230 nm, 8 nm

Pk #	Retention Time	Area	Area Percent	Height
1	8.715	3052056	2.48	205699
2	12.683	120171421	97.52	4080972
Totals				
		123223477	100.00	4286671

3: 254	nm,	8	nm
--------	-----	---	----

Pk #	Retention Time	Area	Area Percent	Height
1	9.781	14299677	49.59	695807
2	15.467	14534447	50.41	422601
Totals				
		28834124	100.00	1118408

3: 254 nm, 8 nm

Pk #	Retention Time	Area	Area Percent	Height
1	9.813	1403601	3.85	72150
2	15.435	35020641	96.15	1034898
Totals				
		36424242	100.00	1107048

Totals			
	42077634	100.00	3206412

3: 254 nm, 8 nm				
Pk #	Retention Time	Area	Area Percent	Height
1	13.707	25210458	49.87	918573
2	18.517	25341270	50.13	639767
Totals				

100.00

	1000 -	Retention Time	-					1000
ШAU	500 -		31	5k				-500
	0		13.9		18.453			0
	10	12	14	16 Minutes	18	20	22	-

3: 254	nm,	8	nm
--------	-----	---	----

Pk #	Retention Time	Area	Area Percent	Height
1	13.931	803910	1.53	33640
2	18.453	51910730	98.47	1236224
Totals				
		52714640	100.00	1269864

3: 254 nm, 8

nm Pk #	Retention Time	Area	Area Percent	Height
1	9.248	5205964	50.38	300916
2	10.283	5127438	49.62	264495
Totals				
		10333402	100.00	565411

Totals			
	7740253	100.00	381949
	•		•

$J. \Delta J \mp \min, 0 \min$

Pk #	Retention Time	Area	Area Percent	Height
1	15.413	40246586	27.35	1288799
2	17.045	33271425	22.61	901611
3	28.917	39999609	27.18	585388
4	34.016	33661066	22.87	424125
Totals				
		147178686	100.00	3199923

Pk #	Retention Time	Area	Area Percent	Height
1	15.669	785960	1.02	28078
2	17.365	432759	0.56	14728
3	28.587	59405700	76.83	829082
4	34.123	16693814	21.59	219006
Totals				
		77318233	100.00	1090894

Pk #	Retention Time	Area	Area Percent	Height
1	29.856	25657395	28.07	350072
2	41.803	26037267	28.48	295363
3	52.224	20044595	21.93	211133
4	55.627	19681801	21.53	197626
Totals				
		91421058	100.00	1054194

3: 254 nm, 8 nm

Pk #	Retention Time	Area	Area Percent	Height
1	29.739	616603	0.57	11162
2	40.939	51725824	47.78	576477
3	52.747	442206	0.41	17
4	54.731	55211778	51.00	466881
Totals				
		108248384	100.00	1054599

3: 254 nm, 8 nm

Pk #	Retention Time	Area	Area Percent	Height
1	12.267	25853632	25.73	1022331
2	16.917	24566640	24.45	703002
3	23.872	25677157	25.55	447132
4	31.669	24385402	24.27	310364
Totals				
		100482831	100.00	2482829

Pk #	Retention Time	Area	Area Percent	Height
1	12.427	3005386	2.83	123580
2	17.099	2687326	2.53	82760
3	23.509	51413117	48.47	830215
4	31.243	48974680	46.17	582900
Totals				
		106080509	100.00	1619455

3: 254 nm, 8 nm

Pk #	Retention Time	Area	Area Percent	Height
1	15.531	8139306	24.79	257482
2	23.125	8574362	26.12	178329
3	29.856	8402038	25.59	132360
4	35.680	7716533	23.50	98585
Totals				
		32832239	100.00	666756

Pk #	Retention Time	Area	Area Percent	Height
1	15.723	762394	2.18	24591
2	23.541	80017	0.23	2225
3	30.389	1514722	4.32	25880
4	35.851	32674347	93.27	402534
Totals				
		35031480	100.00	455230

5) X-ray structure report for product 5g

Experimental

Data Collection

A colorless chunk crystal of C₁₉H₂₃BrN₂O₅ having approximate dimensions of 0.470 x 0.390 x 0.320 mm was mounted on a glass fiber. All measurements were made on a Rigaku SCX mini diffractometer using graphite monochromated Mo-K α radiation.

The crystal-to-detector distance was 52.00 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 8.9423(8) Å b = 10.714(1) Å β = 94.596(3)^o c = 10.4490(9) Å V = 997.8(2) Å³

For Z = 2 and F.W. = 439.31, the calculated density is 1.462 g/cm^3 . Based on the reflection conditions of:

0k0: k = 2n

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P21 (#4)

The data were collected at a temperature of $20 \pm 1^{\circ}$ C to a maximum 2θ value of 55.0°. A total of 540 oscillation images were collected. A sweep of data was done using ω oscillations from -120.0 to 60.0° in 1.0° steps. The exposure rate was 8.0 [sec./°]. The detector swing angle was -30.80°. A second sweep was performed using ω oscillations from -120.0 to 60.0° in 1.0° steps. The exposure rate was 8.0 [sec./°]. The detector swing angle was -30.80°. Another sweep was performed using ω oscillations from -120.0 to 60.0° in 1.0° steps. The exposure rate was 8.0 [sec./°]. The detector swing angle was -30.80°. Another sweep was performed using ω oscillations from -120.0 to 60.0° in 1.0° steps. The exposure rate was 8.0 [sec./°]. The detector swing angle was -30.80°. Another sweep was performed using ω oscillations from -120.0 to 60.0° in 1.0° steps. The exposure rate was 8.0 [sec./°]. The detector swing angle was -30.80°. The crystal-to-detector distance was 52.00 mm. Readout was performed in the 0.146 mm pixel mode.

Data Reduction

Of the 10269 reflections that were collected, 4547 were unique ($R_{int} = 0.0684$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku).

The linear absorption coefficient, μ , for Mo-K α radiation is 20.973 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.251 to 0.511. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F² was based on 4547 observed reflections and 248 variable parameters and converged (largest parameter shift was 0.02 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0559$

wR2 = [
$$\Sigma$$
 (w (Fo² - Fc²)²)/ Σ w(Fo²)²]^{1/2} = 0.1614

The standard deviation of an observation of unit weight⁴ was 0.95. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.55 and -0.54 e⁻/Å³, respectively. The absolute structure was deduced based on Flack parameter, 0.036(10), using 2140 Friedel pairs.⁵

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All calculations were performed using the CrystalStructure¹⁰ crystallographic software package except for refinement, which was performed using SHELXL-97¹¹.

References

(1) <u>CrystalClear</u>: Rigaku Corporation, 1999. CrystalClear Software User's Guide, Molecular Structure Corporation, (c) 2000.J.W.Pflugrath (1999) Acta Cryst. D55, 1718-1725.

(2) <u>SIR92</u>: Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M., Polidori, G., and Camalli, M. (1994) J. Appl. Cryst., 27, 435.

(3) Least Squares function minimized: (SHELXL97)

 $\Sigma w(F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Standard deviation of an observation of unit weight:

 $[\Sigma w(F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where:

 N_0 = number of observations N_v = number of variables

(5) Flack, H. D. (1983), Acta Cryst. A39, 876-881.

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(10) <u>CrystalStructure 4.0</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

(11) <u>SHELX97</u>: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₁₉ H ₂₃ BrN ₂ O ₅
Formula Weight	439.31
Crystal Color, Habit	colorless, chunk
Crystal Dimensions	0.470 X 0.390 X 0.320 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = $8.9423(8)$ Å b = $10.714(1)$ Å c = $10.4490(9)$ Å β = $94.596(3)$ ^O V = $997.8(2)$ Å ³
Space Group	P2 ₁ (#4)
Z value	2
D _{calc}	1.462 g/cm ³
F ₀₀₀	452.00
μ(ΜοΚα)	20.973 cm ⁻¹

B. Intensity Measurements

Diffractometer	SCX mini
Radiation	MoK α (λ = 0.71075 Å) graphite monochromated
Voltage, Current	50kV, 30mA
Temperature	20.0 ^o C
Detector Aperture	75 mm (diameter)
Data Images	540 exposures
ω oscillation Range	-120.0 - 60.0 ⁰
Exposure Rate	8.0 sec./ ^O
Detector Swing Angle	-30.800
ω oscillation Range	-120.0 - 60.0 ⁰
Exposure Rate	8.0 sec./ ^O
Detector Swing Angle	-30.800
ω oscillation Range	-120.0 - 60.0 ⁰
Exposure Rate	8.0 sec./ ^O
Detector Swing Angle	-30.800
Detector Position	52.00 mm
Pixel Size	0.146 mm
20 _{max}	55.0 ⁰
No. of Reflections Measured	Total: 10269 Unique: 4547 (R _{int} = 0.0684) Friedel pairs: 2140

Corrections

Lorentz-polarization Absorption (trans. factors: 0.251 - 0.511)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.1000 · P) ² + 0.0000 · P] where P = (Max(Fo ² ,0) + 2Fc ²)/3
20 _{max} cutoff	55.0 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	4547
No. Variables	248
Reflection/Parameter Ratio	18.33
Residuals: R1 (I>2.00σ(I))	0.0559
Residuals: R (All reflections)	0.0683
Residuals: wR2 (All reflections)	0.1614
Goodness of Fit Indicator	0.952
Flack Parameter (Friedel pairs = 2140)	0.036(10)
Max Shift/Error in Final Cycle	0.016
Maximum peak in Final Diff. Map	0.55 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.54 e⁻/Å ³

atom	х	У	Z	B _{eq}
Br1	0.26330(6)	-1.20023(3)	0.68976(5)	5.59(2)
01	0.3960(3)	-0.7981(4)	1.0328(4)	4.83(7)
02	0.2760(6)	-0.4809(4)	0.7496(5)	6.7(1)
O3	0.3646(4)	-0.6795(3)	0.7415(3)	3.95(6)
O4	-0.1196(4)	-0.6230(4)	0.9239(5)	5.40(8)
O5	0.1167(6)	-0.6139(5)	1.1374(5)	6.4(1)
N1	0.3168(4)	-0.9436(3)	0.8810(4)	3.17(6)
N2	0.1881(5)	-0.6335(4)	0.8694(5)	3.98(8)
C1	0.3096(5)	-0.8331(4)	0.9454(4)	3.41(7)
C2	0.1661(5)	-0.7652(4)	0.8921(4)	3.01(7)
C3	0.1184(4)	-0.8420(4)	0.7758(4)	3.08(6)
C4	0.0084(5)	-0.8201(5)	0.6801(4)	3.99(8)
C5	-0.0173(6)	-0.9065(6)	0.5829(5)	5.1(1)
C6	0.0637(7)	-1.0163(6)	0.5869(5)	4.9(1)
C7	0.1738(5)	-1.0398(4)	0.6843(4)	3.91(8)
C8	0.2049(4)	-0.9498(4)	0.7789(4)	2.87(6)
C9	0.2780(5)	-0.5884(4)	0.7833(5)	3.91(8)
C10	0.4563(5)	-0.6613(5)	0.6311(5)	4.01(8)
C11	0.5778(7)	-0.5689(7)	0.6634(6)	5.9(2)
C12	0.3560(8)	-0.6221(9)	0.5143(6)	7.2(2)
C13	0.5196(8)	-0.7905(6)	0.6137(7)	6.0(2)
C14	0.0510(4)	-0.7842(4)	0.9961(4)	3.18(7)
C15	-0.1027(5)	-0.7312(5)	0.9543(4)	3.70(8)
C16	-0.2317(5)	-0.8193(5)	0.9553(5)	4.33(9)
C17	0.1037(5)	-0.7245(5)	1.1265(5)	4.14(9)
C18	0.1309(8)	-0.8138(7)	1.2366(6)	6.1(2)
C19	0.4410(5)	-1.0292(5)	0.9128(6)	4.61(9)

 $\mathsf{B}_{\mathsf{eq}} = 8/3 \ \pi^2 (\mathsf{U}_{11}(\mathsf{aa}^*)^2 + \mathsf{U}_{22}(\mathsf{bb}^*)^2 + \mathsf{U}_{33}(\mathsf{cc}^*)^2 + 2\mathsf{U}_{12}(\mathsf{aa}^*\mathsf{bb}^*)\mathsf{cos}\ \gamma + 2\mathsf{U}_{13}(\mathsf{aa}^*\mathsf{cc}^*)\mathsf{cos}\ \beta + 2\mathsf{U}_{23}(\mathsf{bb}^*\mathsf{cc}^*)\mathsf{cos}\ \alpha)$

atom	Х	У	z	B _{iso}
H2	0.1409	-0.5810	0.9137	4.77
H4	-0.0486	-0.7475	0.6804	4.79
H5A	-0.0887	-0.8909	0.5152	6.12
H11A	0.5342	-0.4899	0.6828	7.12
H11B	0.6375	-0.5595	0.5917	7.12
H11C	0.6400	-0.5976	0.7367	7.12
H12A	0.4147	-0.6148	0.4417	8.58
H12B	0.3106	-0.5431	0.5306	8.58
H12C	0.2791	-0.6837	0.4967	8.58
H13A	0.5777	-0.7910	0.5404	7.23
H13B	0.4389	-0.8493	0.6009	7.23
H13C	0.5825	-0.8131	0.6889	7.23
H14	0.0398	-0.8741	1.0096	3.82
H16A	-0.2853	-0.8206	0.8720	5.20
H16B	-0.2977	-0.7924	1.0180	5.20
H16C	-0.1952	-0.9015	0.9767	5.20
H18A	0.0624	-0.7961	1.3004	7.37
H18B	0.2321	-0.8047	1.2736	7.37
H18C	0.1156	-0.8978	1.2062	7.37
H19A	0.5050	-1.0316	0.8433	5.53
H19B	0.4024	-1.1112	0.9267	5.53
H19C	0.4975	-1.0010	0.9894	5.53
H6	0.057(8)	-1.09(1)	0.521(8)	9(2)

Table 2. Atomic coordinates and B_{iso} involving hydrogen atoms

Table 3.	Anisotropic	displacement	parameters

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Br1	0.0950(4)	0.0357(3)	0.0848(4)	0.0040(3)	0.0262(3)	-0.0168(3)
01	0.042(2)	0.066(3)	0.074(2)	-0.007(2)	-0.006(2)	-0.022(2)
02	0.118(4)	0.027(2)	0.117(4)	0.003(2)	0.056(3)	0.012(2)
O3	0.058(2)	0.030(2)	0.065(2)	-0.001(2)	0.026(2)	0.001(2)
O4	0.057(2)	0.046(2)	0.104(3)	0.015(2)	0.018(2)	0.019(2)
O5	0.104(3)	0.057(3)	0.086(3)	-0.011(3)	0.035(3)	-0.032(3)
N1	0.034(2)	0.030(2)	0.058(2)	0.003(2)	0.012(2)	-0.002(2)
N2	0.056(2)	0.028(2)	0.070(3)	-0.001(2)	0.027(2)	-0.003(2)
C1	0.040(2)	0.032(2)	0.059(3)	-0.006(2)	0.013(2)	-0.005(2)
C2	0.039(2)	0.026(2)	0.052(3)	-0.001(2)	0.015(2)	-0.001(2)
C3	0.041(2)	0.030(2)	0.047(2)	-0.002(2)	0.010(2)	0.002(2)
C4	0.054(3)	0.044(3)	0.055(3)	0.002(2)	0.005(2)	0.007(2)
C5	0.071(3)	0.072(4)	0.050(3)	-0.009(3)	-0.004(3)	-0.000(3)
C6	0.083(4)	0.058(3)	0.046(3)	-0.012(3)	0.006(3)	-0.010(2)
C7	0.062(3)	0.037(3)	0.052(3)	-0.003(2)	0.021(2)	-0.006(2)
C8	0.040(2)	0.026(2)	0.045(2)	-0.005(2)	0.013(2)	-0.002(2)
C9	0.060(3)	0.028(2)	0.062(3)	-0.003(2)	0.016(2)	-0.002(2)
C10	0.054(3)	0.047(3)	0.053(3)	-0.005(2)	0.013(2)	0.006(2)
C11	0.065(3)	0.079(5)	0.081(4)	-0.020(3)	0.004(3)	0.016(4)
C12	0.077(4)	0.134(7)	0.059(3)	0.003(5)	-0.003(3)	0.004(4)
C13	0.090(4)	0.063(4)	0.082(4)	0.009(4)	0.043(3)	-0.000(3)
C14	0.042(2)	0.030(2)	0.050(2)	0.002(2)	0.016(2)	-0.001(2)
C15	0.042(2)	0.043(3)	0.057(3)	0.005(2)	0.012(2)	-0.002(2)
C16	0.044(2)	0.048(3)	0.073(3)	-0.001(2)	0.006(2)	0.005(3)
C17	0.052(3)	0.050(4)	0.057(3)	-0.002(2)	0.015(2)	-0.014(2)
C18	0.089(4)	0.088(5)	0.054(3)	0.006(4)	-0.006(3)	-0.008(3)
C19	0.048(3)	0.044(3)	0.084(4)	0.010(2)	0.005(2)	0.002(3)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*b^*}U_{12}hk + 2a^{*c^*}U_{13}hl + 2b^{*c^*}U_{23}kl))$

Table 4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Br1	C7	1.895(5)	01	C1	1.208(5)
02	C9	1.205(6)	O3	C9	1.341(6)
O3	C10	1.481(6)	04	C15	1.209(6)
O5	C17	1.195(7)	N1	C1	1.365(6)
N1	C8	1.404(5)	N1	C19	1.459(6)
N2	C2	1.446(6)	N2	C9	1.344(7)
C1	C2	1.541(6)	C2	C3	1.501(6)
C2	C14	1.568(6)	C3	C4	1.365(6)
C3	C8	1.389(6)	C4	C5	1.380(7)
C5	C6	1.380(9)	C6	C7	1.381(7)
C7	C8	1.393(6)	C10	C11	1.489(8)
C10	C12	1.515(8)	C10	C13	1.512(8)
C14	C15	1.519(6)	C14	C17	1.544(6)
C15	C16	1.491(7)	C17	C18	1.501(8)

atom	atom	distance	atom	atom	distance
N2	H2	0.860	C4	H4	0.930
C5	H5A	0.930	C6	H6	1.07(10)
C11	H11A	0.960	C11	H11B	0.960
C11	H11C	0.960	C12	H12A	0.960
C12	H12B	0.960	C12	H12C	0.960
C13	H13A	0.960	C13	H13B	0.960
C13	H13C	0.960	C14	H14	0.980
C16	H16A	0.960	C16	H16B	0.960
C16	H16C	0.960	C18	H18A	0.960
C18	H18B	0.960	C18	H18C	0.960
C19	H19A	0.960	C19	H19B	0.960
C19	H19C	0.960			

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
C9	O3	C10	121.9(4)	C1	N1	C8	110.9(3)
C1	N1	C19	119.8(4)	C8	N1	C19	128.8(4)
C2	N2	C9	123.8(4)	01	C1	N1	126.1(4)
01	C1	C2	126.2(4)	N1	C1	C2	107.6(3)
N2	C2	C1	113.5(4)	N2	C2	C3	115.9(4)
N2	C2	C14	110.2(4)	C1	C2	C3	102.0(3)
C1	C2	C14	105.2(4)	C3	C2	C14	109.3(3)
C2	C3	C4	129.8(4)	C2	C3	C8	108.4(4)
C4	C3	C8	121.8(4)	C3	C4	C5	119.4(5)
C4	C5	C6	119.6(5)	C5	C6	C7	121.2(5)
Br1	C7	C6	117.5(4)	Br1	C7	C8	123.1(3)
C6	C7	C8	119.1(5)	N1	C8	C3	109.9(4)
N1	C8	C7	131.4(4)	C3	C8	C7	118.7(4)
02	C9	O3	126.6(5)	02	C9	N2	122.9(5)
O3	C9	N2	110.4(4)	O3	C10	C11	110.5(4)
O3	C10	C12	109.5(4)	O3	C10	C13	102.1(4)
C11	C10	C12	111.9(5)	C11	C10	C13	111.3(5)
C12	C10	C13	111.1(5)	C2	C14	C15	112.4(4)
C2	C14	C17	112.8(3)	C15	C14	C17	107.7(4)
O4	C15	C14	121.6(4)	O4	C15	C16	121.9(4)
C14	C15	C16	116.4(4)	O5	C17	C14	121.0(5)
O5	C17	C18	123.4(5)	C14	C17	C18	115.6(5)

- 4		-1		- 4	- 1	- 1	I -
atom	atom	atom	angle	atom	atom	atom	
02			110.1	09			110.1
03	04	H4	120.3	05	64	H4	120.3
C4	C5	H5A	120.2	C6	C5	H5A	120.2
C5	C6	H6	129(5)	C7	C6	H6	109(5)
C10	C11	H11A	109.5	C10	C11	H11B	109.5
C10	C11	H11C	109.5	H11A	C11	H11B	109.5
H11A	C11	H11C	109.5	H11B	C11	H11C	109.5
C10	C12	H12A	109.5	C10	C12	H12B	109.5
C10	C12	H12C	109.5	H12A	C12	H12B	109.5
H12A	C12	H12C	109.5	H12B	C12	H12C	109.5
C10	C13	H13A	109.5	C10	C13	H13B	109.5
C10	C13	H13C	109.5	H13A	C13	H13B	109.5
H13A	C13	H13C	109.5	H13B	C13	H13C	109.5
C2	C14	H14	107.9	C15	C14	H14	107.9
C17	C14	H14	107.9	C15	C16	H16A	109.5
C15	C16	H16B	109.5	C15	C16	H16C	109.5
H16A	C16	H16B	109.5	H16A	C16	H16C	109.5
H16B	C16	H16C	109.5	C17	C18	H18A	109.5
C17	C18	H18B	109.5	C17	C18	H18C	109.5
H18A	C18	H18B	109.5	H18A	C18	H18C	109.5
H18B	C18	H18C	109.5	N1	C19	H19A	109.5
N1	C19	H19B	109.5	N1	C19	H19C	109.5
H19A	C19	H19B	109.5	H19A	C19	H19C	109.5
H19B	C19	H19C	109.5				

Table 7. Bond angles involving hydrogens (⁰)

Table 8. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
C9	O3	C10	C11	66.8(5)	C9	O3	C10	C12	-56.9(5)
C9	O3	C10	C13	-174.8(3)	C10	O3	C9	02	-9.2(7)
C10	O3	C9	N2	169.9(3)	C1	N1	C8	C3	-1.2(5)
C1	N1	C8	C7	176.3(4)	C8	N1	C1	01	-175.7(4)
C8	N1	C1	C2	7.9(4)	C19	N1	C1	01	-2.7(7)
C19	N1	C1	C2	-179.1(4)	C19	N1	C8	C3	-173.4(4)
C19	N1	C8	C7	4.1(7)	C2	N2	C9	02	166.9(4)
C2	N2	C9	O3	-12.2(6)	C9	N2	C2	C1	63.8(6)
C9	N2	C2	C3	-53.8(6)	C9	N2	C2	C14	-178.5(4)
01	C1	C2	N2	47.3(6)	01	C1	C2	C3	172.6(4)
01	C1	C2	C14	-73.3(5)	N1	C1	C2	N2	-136.3(4)
N1	C1	C2	C3	-10.9(4)	N1	C1	C2	C14	103.1(4)
N2	C2	C3	C4	-47.5(6)	N2	C2	C3	C8	134.1(4)
N2	C2	C14	C15	61.7(4)	N2	C2	C14	C17	-60.3(4)
C1	C2	C3	C4	-171.3(4)	C1	C2	C3	C8	10.2(4)
C1	C2	C14	C15	-175.5(3)	C1	C2	C14	C17	62.5(4)
C3	C2	C14	C15	-66.7(4)	C3	C2	C14	C17	171.3(3)
C14	C2	C3	C4	77.7(5)	C14	C2	C3	C8	-100.8(4)
C2	C3	C4	C5	-178.7(4)	C2	C3	C8	N1	-6.3(5)
C2	C3	C8	C7	175.9(3)	C4	C3	C8	N1	175.1(4)
C4	C3	C8	C7	-2.7(6)	C8	C3	C4	C5	-0.5(6)
C3	C4	C5	C6	2.9(7)	C4	C5	C6	C7	-2.2(8)
C5	C6	C7	Br1	173.7(5)	C5	C6	C7	C8	-1.0(8)
Br1	C7	C8	N1	11.7(7)	Br1	C7	C8	C3	-171.0(3)
C6	C7	C8	N1	-173.9(4)	C6	C7	C8	C3	3.4(6)
C2	C14	C15	O4	-56.7(5)	C2	C14	C15	C16	124.4(4)
C2	C14	C17	O5	65.6(5)	C2	C14	C17	C18	-116.5(4)
C15	C14	C17	O5	-59.1(5)	C15	C14	C17	C18	118.8(4) [´]
C17	C14	C15	O4	68.2(5)	C17	C14	C15	C16	-110.7(4)

Table 9. Possible hydrogen bonds

Donor	Н	Acceptor	DA	D-H	HA	D-HA	
N2	H2	O4	2.856(6)	0.86	2.38	115.09	intramol.
N2	H2	O5	2.928(7)	0.86	2.39	121.08	intramol.

atom Br1 O1 O1 O1	atom N1 O3 N2 C8	distance 3.410(4) 3.290(5) 2.996(6) 3.446(5)	atom Br1 O1 O1 O1	atom C19 O5 C3 C9	distance 3.275(6) 3.430(6) 3.540(5) 3.538(6)
01	C14	3.082(5)	01	C17	2.971(6)
01	C18	3.316(7)	01	C19	2.818(7)
02	C2	3.563(6)	O2	C10	2.862(7)
02	C11	3.062(8)	02	C12	3.022(9)
O3	N1	3.227(5)	O3	C1	2.767(6)
O3	C2	2.630(5)	O3	C3	2.852(5)
O3	C4	3.535(6)	O3	C8	3.266(5)
04	O5	2.949(6)	04	N2	2.856(6)
04	C2	3.015(6)	04	C3	3.599(6)
04	C4	3.567(7)	04	C17	2.996(6)
05	N2	2.928(7)	O5	C2	3.094(7)
05	C15	2.913(6)	N1	N2	3.514(5)
N1	C4	3.582(6)	N1	C14	3.236(5)
N2	C4	3.159(6)	N2	C8	3.524(6)
N2	C15	3.003(6)	N2	C17	3.010(7)
C1	C9	3.122(6)	C1	C17	2.981(6)
C1	C18	3.555(8)	C3	C6	2.733(7)
C3	C9	3.067(6)	C3	C15	3.064(6)
C4	C7	2.778(7)	C4	C9	3.566(7)
C4	C14	3.315(6)	C4	C15	3.250(7)
C5	C8	2.775(6)	C7	C19	3.242(7)
C8	C14	3.270(6)	C9	C11	3.056(8)
C9	C12	2.971(8)	C15	C18	3.586(7)
C16	C17	3.516(6)			

Table 10. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom	distance
Br1	H19A	3.155	Br1	H19B	2.845
Br1	H6	2.70(8)	O1	H2	3.422
01	H14	3.278	O1	H18B	3.013
01	H18C	3.382	O1	H19A	3.381
01	H19B	3.535	O1	H19C	2.413
02	H2	2.425	O2	H11A	2.467
02	H11C	3.500	O2	H12B	2.427
02	H12C	3.424	O3	H2	2.988
O3	H11A	2.637	O3	H11B	3.266
O3	H11C	2.618	O3	H12A	3.274
O3	H12B	2.655	O3	H12C	2.611
O3	H13A	3.181	O3	H13B	2.463
O3	H13C	2.514	O4	H2	2.383
O4	H4	2.985	O4	H14	3.140
O4	H16A	2.616	O4	H16B	2.655
O4	H16C	3.119	O5	H2	2.390
O5	H14	3.143	O5	H18A	2.661
O5	H18B	2.652	O5	H18C	3.125
N1	H13B	3.360	N1	H13C	3.520
N1	H14	3.005	N2	H4	3.034
N2	H14	3.295	C1	H2	3.098
C1	H14	2.593	C1	H18B	3.566
C1	H18C	3.417	C1	H19A	3.001
C1	H19B	3.103	C1	H19C	2.480
C2	H4	2.816	C3	H2	3.144
C3	H5A	3.211	C3	H13B	3.522
C3	H14	2.618	C4	H12C	3.523
C4	H14	3.480	C4	H16A	3.430
C4	H6	3.41(10)	C6	H4	3.227
C7	H5A	3.242	C7	H13B	3.297
C7	H19A	3.279	C7	H19B	3.217
C8	H4	3.244	C8	H13B	3.102
C8	H14	3.036	C8	H19A	2.852
C8	H19B	2.839	C8	H19C	3.326
C8	H6	3.28(9)	C9	H4	3.477
C9	H11A	2.802	C9	H11C	3.313
C9	H12B	2.723	C9	H12C	3.165

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens

atom	atom	distance	atom	atom	distance
C11	H12A	2.682	C11	H12B	2.679
C11	H12C	3.307	C11	H13A	2.705
C11	H13B	3.297	C11	H13C	2.630
C12	H11A	2.683	C12	H11B	2.667
C12	H11C	3.312	C12	H13A	2.682
C12	H13B	2.681	C12	H13C	3.321
C13	H11A	3.301	C13	H11B	2,706
C13	H11C	2.619	C13	H12A	2.718
C13	H12B	3.318	C13	H12C	2.648
C13	H19A	3.535	C14	H2	2.497
C14	H4	3.370	C14	H16A	3.202
C14	H16B	3.146	C14	H16C	2.529
C14	H18A	3.176	C14	H18B	3.213
C14	H18C	2.536	C15	H2	2.768
C15	H4	2.946	C16	H4	3.504
C16	H14	2.518	C17	H2	2.745
C17	H16C	3.538	C18	H14	2.529
C19	H13C	3.593	H2	H4	3.366
H2	H14	3.438	H4	H5A	2.317
H4	H16A	3.127	H5A	H6	2.527
H11A	H12A	2.974	H11A	H12B	2.519
H11A	H12C	3.548	H11A	H13A	3.588
H11A	H13C	3.490	H11B	H12A	2.505
H11B	H12B	2.947	H11B	H12C	3.538
H11B	H13A	2.584	H11B	H13B	3.582
H11B	H13C	2.955	H11C	H12A	3.549
H11C	H12B	3.555	H11C	H13A	2.938
H11C	H13B	3.480	H11C	H13C	2.409
H12A	H13A	2.552	H12A	H13B	3.012
H12A	H13C	3.580	H12B	H13A	3.568
H12B	H13B	3.533	H12C	H13A	2.910
H12C	H13B	2.476	H12C	H13C	3.528
H13B	H19A	3.215	H13C	H19A	2.957
H14	H16A	3.190	H14	H16B	3.150
H14	H16C	2.122	H14	H18A	3.143
H14	H18B	3.219	H14	H18C	2.126
H16C	H18C	3.522			

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)
atom	atom	distance	atom	atom	distance
Br1	O2 ¹	3.071(4)	O1	C16 ²	3.496(5)
O1	C19 ³	3.258(7)	O2	Br1 ⁴	3.071(4)
O2	C16 ⁵	3.585(8)	O4	N1 ⁵	3.397(6)
O5	C6 ⁵	3.569(7)	O5	C7 ⁵	3.410(7)
O5	C8 ⁵	3.540(6)	O5	C16 ⁵	3.482(7)
N1	O4 ⁶	3.397(6)	C6	O5 ⁶	3.569(7)
C7	O5 ⁶	3.410(7)	C8	O5 ⁶	3.540(6)
C16	O1 ⁷	3.496(5)	C16	O2 ⁶	3.585(8)
C16	O1 ⁷	3.496(5)	C16	O2 ⁶	3.585(8)
C16	O5 ⁶	3.482(7)	C19	O1 ⁸	3.258(7)

Symmetry Operators:

(1) X,Y-1,Z	(2) X+1,Y,Z
(3) -X+1,Y+1/2,-Z+2	(4) X,Y+1,Z
(5) -X,Y+1/2,-Z+2	(6) -X,Y+1/2-1,-Z+2
(7) X-1,Y,Z	(8) -X+1,Y+1/2-1,-Z+2

atom	atom	distance	atom	atom	distance
Br1	H5A ¹	3.265	Br1	H11B ²	3.482
Br1	H12A ²	3.413	Br1	H13A ²	3.049
Br1	H16B ³	3.201	Br1	H18A ³	3.098
01	H16A⁴	3.430	01	H16B⁴	2.756
01	H19A⁵	3.230	01	H19B⁵	2.705
01	H19C⁵	3.336	02	H5A ⁶	3.263
02	H16B ⁷	3.152	02	H16C ⁷	3.123
02	H19C⁵	3.271	O3	H19C⁵	3.540
O4	H11C ⁸	2.802	O4	H14 ⁷	2.833
O4	H18C ⁷	2.771	O4	H19B ⁷	3.079
O5	H14 ⁷	3.252	O5	H16A ⁷	3.490
O5	H16C ⁷	2.688	O5	H19A⁵	3.486
N2	H16C ⁷	2.958	N2	H19C⁵	3.381
C1	H16B⁴	3.559	C4	H6 ⁶	3.24(10)
C5	H12B ¹	3.151	C5	H18A ⁹	3.310
C5	H6 ⁶	3.54(11)	C6	H11B ²	3.411
C6	H12B ¹	3.483	C6	H12C ¹	3.598
C6	H18A ³	3.443	C7	H11B ²	3.462
C7	H18A ³	3.476	C9	H16C ⁷	3.338
C9	H19C⁵	3.128	C11	H18B⁵	3.340
C11	H18C⁵	3.484	C12	H5A ⁶	3.439
C12	H18B ⁹	3.307	C13	H12A ²	3.578
C13	H12B ²	3.503	C13	H16A ⁴	3.110
C15	H11C ⁸	3.417	C15	H19B ⁷	3.303
C16	H2 ³	3.197	C16	H11C ⁸	3.429
C16	H13C ⁸	3.126	C16	H19A ⁸	3.412
C16	H19B ⁷	3.020	C16	H19C ⁸	3.149
C18	H11A ¹⁰	3.582	C18	H12C ¹¹	3.242
C19	H16A⁴	3.366	C19	H16B ⁴	3.562
C19	H16B ³	3.204	C19	H16C⁴	3.543
H2	C16 ⁷	3.197	H2	H14 ⁷	2.895
H2	H16B ⁷	3.446	H2	H16C ⁷	2.271
H2	H18C ⁷	3.198	H2	H19C⁵	3.419
H4	H11B ⁸	3.518	H4	H11C ⁸	3.308
H4	H13A ⁸	3.569	H4	H13C ⁸	3.381
H4	H6 ⁶	2.676	H5A	Br1 ⁶	3.265
H5A	O21	3.263	H5A	C12 ¹	3.439

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens

atom	atom	distance	atom	atom	distance
H5A	H12B ¹	2.583	H5A	H12C ¹	3.567
H5A	H13A ⁸	3.199	H5A	H18A ⁹	2.894
H5A	H6 ⁶	3.228	H11A	C18⁵	3.582
H11A	H13A ¹²	3.256	H11A	H13B ¹²	3.351
H11A	H18B⁵	2.891	H11A	H18C⁵	3.398
H11A	H19C⁵	3.461	H11B	Br1 ¹²	3.482
H11B	C6 ¹²	3.411	H11B	C7 ¹²	3.462
H11B	H4 ⁴	3.518	H11B	H13B ¹²	3.060
H11B	H18B⁵	3.245	H11B	H18C⁵	3.405
H11B	H6 ¹²	3.082	H11C	O4 ⁴	2.802
H11C	C15 ⁴	3.417	H11C	C16 ⁴	3.429
H11C	H4 ⁴	3.308	H11C	H16A ⁴	2.829
H11C	H18B⁵	3.345	H11C	H18C⁵	3.083
H11C	H19B⁵	3.570	H11C	H19C⁵	3.367
H12A	Br1 ¹²	3.413	H12A	C13 ¹²	3.578
H12A	H13A ¹²	3.474	H12A	H13B ¹²	3.177
H12A	H13C ¹²	3.509	H12A	H18B ⁹	3.072
H12A	H19A ¹²	3.244	H12B	C5 ⁶	3.151
H12B	C6 ⁶	3.483	H12B	C13 ¹²	3.503
H12B	H5A ⁶	2.583	H12B	H13A ¹²	2.993
H12B	H13B ¹²	3.422	H12B	H13C ¹²	3.550
H12B	H6 ⁶	3.333	H12C	C6 ⁶	3.598
H12C	C18 ⁹	3.242	H12C	H5A ⁶	3.567
H12C	H18A ⁹	2.962	H12C	H18B ⁹	2.671
H12C	H6 ⁶	3.151	H13A	Br1 ¹²	3.049
H13A	H4 ⁴	3.569	H13A	H5A⁴	3.199
H13A	H11A ²	3.256	H13A	H12A ²	3.474
H13A	H12B ²	2.993	H13A	H16A ⁴	3.595
H13B	H11A ²	3.351	H13B	H11B ²	3.060
H13B	H12A ²	3.177	H13B	H12B ²	3.422
H13C	C164	3.126	H13C	H4 ⁴	3.381
H13C	H12A ²	3.509	H13C	H12B ²	3.550
H13C	H16A⁴	2.168	H13C	H16B ⁴	3.525
H13C	H16C⁴	3.596	H14	O4 ³	2.833
H14	O5 ³	3.252	H14	H2 ³	2.895
H16A	O1 ⁸	3.430	H16A	O5 ³	3.490
H16A	C13 ⁸	3.110	H16A	C19 ⁸	3.366

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
H16A	H11C ⁸	2.829	H16A	H13A ⁸	3.595
H16A	H13C ⁸	2.168	H16A	H19A ⁸	2.937
H16A	H19B ⁷	3.302	H16A	H19C ⁸	3.065
H16B	Br1 ⁷	3.201	H16B	O1 ⁸	2.756
H16B	O2 ³	3.152	H16B	C1 ⁸	3.559
H16B	C19 ⁸	3.562	H16B	C19 ⁷	3.204
H16B	H2 ³	3.446	H16B	H13C ⁸	3.525
H16B	H19A ⁸	3.534	H16B	H19B ⁷	2.250
H16B	H19C ⁸	2.889	H16B	H19C ⁷	3.595
H16C	O2 ³	3.123	H16C	O5 ³	2.688
H16C	N2 ³	2.958	H16C	C9 ³	3.338
H16C	C19 ⁸	3.543	H16C	H2 ³	2.271
H16C	H13C ⁸	3.596	H16C	H19A ⁸	3.236
H16C	H19C ⁸	2.960	H18A	Br1 ⁷	3.098
H18A	C5 ¹¹	3.310	H18A	C6 ⁷	3.443
H18A	C7 ⁷	3.476	H18A	H5A ¹¹	2.894
H18A	H12C ¹¹	2.962	H18A	H6 ⁷	3.108
H18B	C11 ¹⁰	3.340	H18B	C12 ¹¹	3.307
H18B	H11A ¹⁰	2.891	H18B	H11B ¹⁰	3.245
H18B	H11C ¹⁰	3.345	H18B	H12A ¹¹	3.072
H18B	H12C ¹¹	2.671	H18C	O4 ³	2.771
H18C	C11 ¹⁰	3.484	H18C	H2 ³	3.198
H18C	H11A ¹⁰	3.398	H18C	H11B ¹⁰	3.405
H18C	H11C ¹⁰	3.083	H19A	O1 ¹⁰	3.230
H19A	O5 ¹⁰	3.486	H19A	C16 ⁴	3.412
H19A	H12A ²	3.244	H19A	H16A ⁴	2.937
H19A	H16B ^₄	3.534	H19A	H16C⁴	3.236
H19B	O1 ¹⁰	2.705	H19B	O4 ³	3.079
H19B	C15 ³	3.303	H19B	C16 ³	3.020
H19B	H11C ¹⁰	3.570	H19B	H16A ³	3.302
H19B	H16B ³	2.250	H19C	O1 ¹⁰	3.336
H19C	O2 ¹⁰	3.271	H19C	O3 ¹⁰	3.540
H19C	N2 ¹⁰	3.381	H19C	C9 ¹⁰	3.128
H19C	C16⁴	3.149	H19C	H2 ¹⁰	3.419
H19C	H11A ¹⁰	3.461	H19C	H11C ¹⁰	3.367
H19C	H16A ^₄	3.065	H19C	H16B ⁴	2.889
H19C	H16B ³	3.595	H19C	H16C⁴	2.960

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
H6	C4 ¹	3.24(10)	H6	C5 ¹	3.54(11)
H6	H4 ¹	2.676	H6	H5A ¹	3.228
H6	H11B ²	3.082	H6	H12B ¹	3.333
H6	H12C ¹	3.151	H6	H18A ³	3.108

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

Symmetry Operators:

(1) -X,Y+1/2-1,-Z+1	(2) -X+1,Y+1/2-1,-Z+1
(3) -X,Y+1/2-1,-Z+2	(4) X+1,Y,Z
(5) -X+1,Y+1/2,-Z+2	(6) -X,Y+1/2,-Z+1
(7) -X,Y+1/2,-Z+2	(8) X-1,Y,Z
(9) X,Y,Z-1	(10) -X+1,Y+1/2-1,-Z+2
(11) X,Y,Z+1	(12) -X+1,Y+1/2,-Z+1