Guanidiniocarbonyl-pyrrole -aryl conjugates as inhibitors of human dipeptidyl peptidase III: combined experimental and computational study

Josipa Matić^{*a*}, Filip Šupljika^{*a*}, Nora Tir^{*a*}, Patryciusz Piotrowski^{*b*}, Carsten Schmuck^{*b*}, Marija Abramić^{*a*}, Ivo Piantanida^{*a**}, Sanja Tomić^{*a**}

Titrations of hDDP III with 1, 3 and 4

Scheme S1. Fluorimetric titration of hDPP III mutant E451A with 3 (LEFT) and 4 (RIGHT): $c(\text{enzyme}) = 2 \times 10^{-6} \text{ M}$, $\lambda_{\text{exc}} = 350 \text{ nm}$, $\lambda_{\text{em}} = 548 \text{ nm}$; done at pH = 7.4, 20 mM tris-HCl buffer.

Scheme S2. ITC titrations of **hDPP III mutant E451A** with **Arg-Arg-2NA** (LEFT) and **3** (RIGHT); $c(\text{enzyme}) = 2.5 \times 10^{-6} \text{ M}$. Done at pH = 7.4, 20 mM tris-HCl buffer.

Molecular modelling

Figure S1. Structure of the initial complexes: a) cWT_{MD} -2(AD1), b) cWT_{MD} -2(AD2), c) cWT_{MD} -3(AD), d) cWT-2(AD), e) cWT-2, f) cWT-3.

Figure S2. Distances between D186-S500 and Q400-S500 C α atoms, d_1 and d_2 , respectively, describe the mutual position of the two DPP III domains. Their values for the most relevant h.DPP III structures are given in the table below:

	oWT	cWT	cWT _{MD}
d ₁ (D186-S500) / Å	38.5	11.6	17.0
<i>d</i> ₂ (Q400-S500) / Å	25.2	20.9	8.2

Figure S3. Radius of gyration traced during simulations of the h.DPP III – **2** complexes (TOP) and h.DPP III – **3** complexes (BOTTOM).

Figure S4 Profile of distances d_1 and d_2 determined during simulations of the cWT_{MD}-2(AD1) (TOP) and cWT_{MD}-2(AD2) (BOTTOM) complexes.

Figure S5 cWT_{MD}-2(AD1) complexes. Inhibitor, 2 is given in stick representation, and h.DPP III is represented as ribon.

Figure S6 Changes in Zn^{2+} coordination noticed during simulations of cWT_{MD}-2(AD),

Figure S7 Interactions between 2 and the amino acid residues from the DPP III active site inter-domain cleft.

Figure S8 Profile of distances d_1 and d_2 determined during simulations of cWT_{MD}-3(AD), cWT-3(AD), cWT_{MD}-3 and cWT-3 complexes, from top to bottom, respectively.

Figure S9 Alignment of the inhibitor 3 and RRNA bound inito the h.DPP III interdomain cleft. cWT_{MD} -3(AD) and cWT-3(AD) are represented by thin sticks, while cWT_{MD} -3 and cWT-3 are represented by thick sticks. Arg-Arg-NA is given in magenta colored stick representation.

 Table S1 Components of the MMGBSA and MMPBSA binding free energies

	MMGBSA			
	$(\Delta G_{gas} \pm \sigma) / kcal mol^{-1}$	$(\Delta G_{solv} \pm \sigma) / kcal mol^{-1}$	$(\Delta G_{tot} \pm \sigma) / kcal mol^{-1}$	
cWT-2	-387 ± 13	353 ± 11	-34 ± 5	
cWT-2'	-471±12	442±10	-29±5	
cWT-3	160 ± 12	-179 ± 11	-19 ±4	
		MMPBSA		
	$(\Delta G_{gas} \pm \sigma) / kcal mol^{-1}$	$(\Delta G_{solv} \pm \sigma) / kcal mol^{-1}$	$(\Delta G_{tot} \pm \sigma) / kcal mol^{-1}$	
cWT-2	-227 ± 7	181 ± 7	-46 ± 4	
cWT-2'	-259 ± 6	218 ± 6	-40 ± 4	
cWT-3	56 ± 6	-77 ± 8	-21 ± 5	

The binding free energies were calculated using coordinates generated during the last 5 ns of MD simulations. Dielectric constant for enzyme was set either to 2 (PB calculations) or 1 (GB calculations), and for solvent to 80. Ionic strenght was 0.1 mM. Nonpolar solvatation energy was calculated from solvent accesible surface (SASA), $\Delta_{sol}H_{np} = \gamma SASA + \beta$, wherein γ , surface tension is 0,0378 kJ mol⁻¹ Å⁻², and *offset*, β , -0,5692 kJ mol⁻¹.