Tetrocarcins N and O, glycosidic spirotetronates from a marine-derived *Micromonospora* sp. identified by PCR-based screening

Yi Tan,^a Yuanyuan Hu,^a Qiang Wang,^a Hongxia Zhou,^a Yiguang Wang^a and Maoluo Gan^{a,b*}

^a Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

^b State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

Correspondence e-mail: ganml@hotmail.com

Supporting Information

Contents

Figure S1. The amino acid sequence alignment (a) and the phylogenetic tree (b) of cloned of dehydratase fragments with their known analogues	JTDP-Glucose-4,6- S4
Figure S2. The (+)-HRESIMS spectrum of compound 1	S5
Figure S3. The IR spectrum of compound 1	S6
Figure S4. The ¹ H NMR spectrum of compound 1	S7
Figure S5. The ¹³ C NMR spectrum of compound 1	S8
Figure S6. The DEPT spectrum of compound 1	S9
Figure S7. The ¹ H- ¹ H COSY spectrum of compound 1	S10
Figure S8. The HSQC spectrum of compound 1	S11
Figure S9. The HMBC spectrum of compound 1	S12
Figure S10. The ROESY spectrum of compound 1	S13
Figure S11. The (+)-HRESIMS spectrum of compound 2	S14
Figure S12. The IR spectrum of compound 2	S15
Figure S13. The ¹ H NMR spectrum of compound 2	S16
Figure S14. The ¹³ C NMR spectrum of compound 2	S17
Figure S15. The DEPT spectrum of compound 2	S18
Figure S16. The ¹ H- ¹ H COSY spectrum of compound 2	S19
Figure S17. The TOCSY spectrum of compound 2	S20
Figure S18. The HSQC spectrum of compound 2	S21
Figure S19. The HMBC spectrum of compound 2	S22
Figure S20. The ROESY spectrum of compound 2	S23
Figure S21. The CD spectra of compounds 1–3	S24

ChaH1	-MRILITGGAGFIGSHFVRSLLDDRYAGWEGARVTVLDKLTYAGNRASLP-ASHPRLTF	60
Ch1C2	-MRYFVTGGAGFIGGHYVRALLAGAYPGTAGCEVTVLDKLTYAAHLDNLPLDHDRLTF	60
ChmAII	-MRVLVTGAAGFIGSHFVRQLLSGSYPELAGAHVLSLDKLTYAGNTENLAEVAGHPRHTF	60
ChryE	TTHLLVTGGAGFIGSHYVRTLLSPEGPGDISVTVLDALTYAGNPANLDPVRAHPGFTF	60
LanH	MKKILITGGAGFIGSHYVRTLLNDGYEDWKGAHVTVLDKLTYAGNRDNLPEAHPRLTF	60
PdmY	-MRILVTGGAGFIGSHYVRSVLAGRYPAVADALVTVVDKLTYAGNTDNLPIGDPRLTF	60
RhoH	-MNIPVTGAAGFIGSHFVRTLLSGGYPGHEDDRVTVVDKLTYAGTLNNLPPRHPRLTF	60
StrE	ATRLLVTGGAGFIGSHYVRTLLGPDGPPDAVVTVLDALSYAGNLANLDPVRDHPPVRF	60
TcaB2	SKRVVVTGGAGFIGSHYVRQLIGGAYPAFADASVVVLDKLTYAGNLDNLAAVSGDERFEL	60
UrdH	-MNILVTGAAGFIGSHFVRSLLADTYSGWEGARVTALDKLTYAGNRNNLPPSNPRLEF	60
dTGD 5-297a	VVVLDKLTYAGNLDNLAAVSGDERFEL	60
dTGD_5-297b	YVGFEDCHVTVLDKLTYASDRNNLPAHHPRLTF	60
_	* :* *:*** . :	
ChaH1	VQGDVCDSALLREVLPGHDAVVHFAAESHVDRSITGAAEFFRTNVLGTQALLDAVLATGV	120
Ch1C2	VRGDICDAGLLADLLPGHDAVVHFAAESHVDRSLADGTPFVTTNVLGTQILLDACARTGV	120
ChmAII	LHGDICDPPTVAQALRGTDLVVHFAAESHVDRSITDSAAFVTTNVLGTQTLLRSALEAGV	120
ChryE	VRGDICDAPLVRSLARRADQIVHFAAESHVDRSITDPAAFTRTNVMGTQILLDAALRAGT	120
LanH	VQGDICDFELLLELLPGHDAVVHFAAESHVDRSLESAEEFVHTNVTGTQRLLDAVLATRV	120
PdmY	VKGDICDVPLLRELLPGHDAVVHFAAESHVDRSLVSAGEFAVTNVLGTQSLLDCCVLAGI	120
RhoH	VHGDICDTPLLGKVFPGHEAVVHFAAESHVDRSVAGAEAFVRTNVLGTQALLEAALRHGT	120
StrE	VHGDICDADLVRVMAG-QDQVVHLAAESHVDRSLLDAAAFVRTNAGGTQTLLDAALRHGV	120
TcaB2	VVGDICDAQLLAGLLPGADVVVHFAAESHVDRSIVGAADFMHTNVQGTYTVLQACLDAGV	120
UrdH	VRGDVCDRALLRELLPGHHAVVHFAAESHVDRSLEGAGEFFRTNVLGTQTLLDAVLDSGV	120
dTGD 5-297a	VVGDICDAQLI.AGLI.PGADVVVHFAAESHVDRSIVGAADFMHTNVQGTYTVLQACI.DAGV	120
dTGD_5-297b	VRGDICDRPLLADI VPGHDAL VHFAAESHVDRSIDDPAPFFETNVMGSHHLLAACARAAV	120
4100_0 2010	: **:** : . :**:*******: . * **. *: :* .	120
ChaH1	ERVVHVSTDEVYGSTEEGAWTEEWPLLPNTPYAASKAGSDLVARSYWRTHGVDVSVTRCS	180
Ch1C2	PRFVHVSTDEVYGSLRHGSWTEDTLLEPNSPYAASKAASDLMARAYWRTSDVAVSTTRCS	180
ChmAII	SRFVHVSTDEVYGSTPEGSSTEADPLDPNSPYAASKASSDLLALAFHRTHGLDVRVTRCS	180
ChrvE	RTFVHISTDEVYGSIDEGSWPEDHPLRPSSPYAASKASSDLLALSHHHTHGLDVRVTRCS	180
LanH	KRVVHVSTDEVYGSIDEGSWTEEWPLAPNSPYSASKAASDLLARSYWRTHGLDLSITRCS	180
PdmY	GRVVHVSTDEVHGSIDTGSWDEAAPVDPRSPYAASKAASDHFALAYHHTHRLPVMITRCS	180
RhoH	GVFVQVSTDETYGSTAEGSWTEDEPLLPNSPYAASKASADLTARSYWRTHGLDVRVTRCA	180
StrE	APFVQVSTDEVYGSLETGSWTEDEAVRPNSPYAASKASGDLLALAMHVSHGLDVRTTRCS	180
TcaB2	GRVVQVSTDEVYGSTATGSWPESDPLEPNSPYSASKACGDLTARSYFRTYGLPVCLTRCS	180
UrdH	ERVVHVSTDEVYGSIEQGSWTEDWPLQPNSPYAASKACSDLVARAYCAPTEVDLSITRCS	180
dTGD 5-297a	GRVVQVSTDEVYGSTATGSWPESDPLEPNSPYSASKACGDLTARSYFRTYGLPVCLTRCS	180
dTGD_5-297b	GRVVHVSTDEVYGSITDGSWTERCVLEPNSPYAASKAASDCVVRSYWRTYDVDVSITRCA	180
—	.*::****.:**: *: * : * :**:**** .* : . :	
ChaH1	NNYGPYQHPEKLIPLFITNLLEGRPVPLYGDGRNVREWMHVDDHCRALHLVLNNGRAGEV	240
Ch1C2	NNYGTHQFIEKVVPLFVTNLLDGLDVPLYGDGHHVREWLHVEDHCRALHLVLTEGRAGEI	240
ChmAII	NNYGPHQHPEKVVPLFVTHLLEGLRLPLYGDGLHRRDWLHVDDHCRGIAMVAARGRAGEV	240
ChryE	NNYGHHHFPEKAIPLFVTRLLDGRKVPLYGDGRNVRDWLHIDDHVRAVELVRTSGRPGEV	240
LanH	NNYGPYQHPEKLIPLFVTNLLEGEQVPLYGDGGNIREWLHVDDHCRAIDLVLNKGRAGEI	240
PdmY	NNYGPYQFPEKVIPLFVTNLLAGRPVPLFGDGLHRRQWLHVSDHCDAVQRVLEDGAPGEV	240
RhoH	NNYGPGQHPEKLVPLFVTRLLDGQPVPLYGDGSNLREWLHVDDHCRAVRLVLDEGRPGEI	240
StrE	NNYGPYQFPEKLVPRFVTLLLEGRKVPLYGDGLHVRDWLHVDDHVRGIEAVRARGRAGRV	240
TcaB2	NNYGPHQYPEKIIPLFITNLLDGRPVPLYGDGHNVRDWLHVDDHCRATQLVVFGGRPGEV	240
UrdH	NNYGPHOHPEKVIPRFVTNLLEGRQVPLYGDGRNVREWIHVEDHCRGIHI, VINKGQAGEI	240
dTGD 5-297a	NNY	240
dTGD 5-297b	NNY	240
	***	- 0

(a)

(b)

Figure S1. The amino acid sequence alignment (**a**) and the phylogenetic tree (**b**) of cloned dTDP-Glucose-4,6dehydratase fragments with their known analogues. dTGD 5-297a (NCBI accession no. HQ241421) and dTGD 5-297b (accession no. HQ241422) are the cloned dTDP-glucose-4,6-dehydratase gene fragments identified from *Micromonospora* sp. 5-297; ChaH1 (accession no. AIU99207) for chattamycin biosynthesis from *Streptomyces chattanoogensis*; UrdH (accession no. AAF00211) for urdamycin A biosynthesis *S. fradiae*; LanH (accession no. AAD13546) for landomycin biosynthesis from *S. cyanogenus*; ChIC2 (accession no. AAZ77689) for chlorothricin biosynthesis from *S. antibioticus*; PdmY (accession no. ABM21738) for pradimicin biosynthesis from *Actinomadura hibisca*; TcaB2 (accession no. ACB37735) for tetrocarcin A biosynthesis from *Micromonospora chalcea*; RhoH (accession no. BAB87836) for rhodomycin biosynthesis from *S. violaceus*; ChmAII (accession no. AAS79449) for chalcomycin biosynthesis from *S. bikiniensis*; ChryE (accession no. CBH32097) for chrysomycin biosynthesis from *S. albaduncus*; StrE (accession no. CAA07387) for 5'-hydroxystreptomycin biosynthesis from *S. glaucescens*.

Figure S2. The (+)-HRESIMS spectrum of compound 1

Figure S3. The IR spectrum of compound 1

Figure S4. The ¹H NMR spectrum of compound 1

Figure S5. The ¹³C NMR spectrum of compound 1

Figure S6. The DEPT spectrum of compound 1

Figure S7. The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of compound **1**

Figure S8. The HSQC spectrum of compound 1

Figure S9. The HMBC spectrum of compound 1

Figure S10. The ROESY spectrum of compound 1

Figure S11. The (+)-HRESIMS spectrum of compound 2

Figure S12. The IR spectrum of compound 2

Figure S13. The ¹H NMR spectrum of compound 2

Figure S14. The ¹³C NMR spectrum of compound 2

Figure S15. The DEPT spectrum of compound 2

Figure S16. The ¹H-¹H COSY spectrum of compound 2

Figure S19. The HMBC spectrum of compound 2

Figure S20. The ROESY spectrum of compound 2

Figure S21. The CD spectra of compounds 1–3