Pre-coating with Protein fractions inhibits nano-

carrier aggregation in human blood plasma.

Laura K. Müller¹, Johanna Simon¹, Susanne Schöttler^{1,2}, Katharina Landfester¹, Volker

Mailänder^{1,2,*}, Kristin Mohr^{1,*}

¹Max Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

²III. Medical Clinic (Hematology, Oncology and Pulmonology), University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany

Corresponding and Senior Authors:

Dr. Kristin Mohr, Max-Planck-Institute for Polymer Research, mohr@mpip-mainz.mpg.de

PD Dr. Volker Mailänder, University Medicine Mainz and Max-Planck-Institute for Polymer Research, volker.mailaender@unimedizin-mainz.de

SUPPLEMENTARY INFORMATION

CONTENT:

- 1. LC-MS analysis of different protein fractions
- 2. Series-connection of Protein A and AffiGel Blue columns
- 3. Detailed overview of DLS data
- 4. Zetapotential of particles in the different protein fractions
- 5. Dependency of NP stability on protein concentration
- 6. Influence of protein amount used for pre-coating on particle stability against aggregation in concentrated human plasma

1. LC-MS analysis of different protein fractions

Table S1. LC-MS analysis of different protein fractions. (A detailed overview can be found in a separate excel file).

		IgG depleted	HSA depleted	HSA (AffiBlue	HSA (columns
	lgG	plasma	plasma	only)	in series)
Sum of all Immunoglobulins	94,20%	5,87%	27,70%	34,60%	3,58%
Albumin	0,56%	56,92%	4,08%	47,39%	84,14%
Others	5,23%	37,22%	68,22%	18,01%	12,28%

2. Series-connection of Protein A and AffiGel Blue columns

Figure S1. SDS-Page of AffiBlue affinity chromatography with prior IgG-depletion. (FT = flow through)

3. Detailed overview of DLS data

Figure S2. Angular dependency of the hydrodynamic radius of the measured samples.

Figure S3. Angular dependency of (coated) particles in concentrated Human Plasma

Figure S4. Autocorrelation functions of uncoated as well as coated particles in concentrated human plasma at a scattering angle of 30° .

								OOH			NH ₂	- NH
					HOC	oc-		Гсоон				NH ₂
	Rh / n	m	Rh / nm	1/%	Rh/ nr	m	Rh / nm	1/%	Rh / n	m	Rh / nm	۱/%
	extrap	olated	30°	30°	extrap	polated	30°	30°	extra	olated	30°	30°
naked	69			58			65					
Placma dilutad	93	93 07 5	126	34	80	05	68	95	74	71	110	21
riasilia uliuteu	Plasma diluted 82	87.5	115	93	110	110 95	166	33	68		-	0
InG	191	224	423	24	99	95 5	137	34	285	206.5	229	37
16.0	257	224	470	30	92	55.5	84	32	128		206	21
Albumin-IgG-mixture	241	180	335	22	95	90.5	76	100	121	137.5	95	65
(affi_only)	119		184	9	86	50.5	77	100	154		80	58
Albumin (row)	125	121 5	309	15	57	61 5	57	100	67	72	70	92
Albumin (row)	118	121.5	381	28	66	01.5	71	42	77		64	100
InG-depleted Plasma	198	146	407	13	67	93 5	62	100	71	70	75	98
igo-depieted riasilia	94	140	765	15	100	05.5	193	19	69		84	95
Albumin-depleted	102	107	477	15	54	E7 E	53	100	88	102	104	72
Plasma	172	157	219	16	61	57.5	62	58	116		491	18
Albumin- and IgG -	59	~	59	100	57	F2 F	24	9	72	77.5	-	0
depleted Plasma	63	01	46	100	50	53.5	50	100	83		-	0
IgG com in running buffer	226		790	13	503	642	507	96	408	345	651	13
	163	194.5	163	45	781	642	854	81	282		894	12
UCA com in supping buffer	152	100 5	109	97	62	64	60	100	88	80.5	105	55
HSA com in running butter	187	109.5	132	43	66	64	65	54	73		91	73
IgG com in PBS	210	210 156 183	269	19	101	00 F	72	99	224	174.5	4169	4
	156		333	22	80	90.5	70	100	125		2234	2
Albumin com in PBS	212	104	647	11	72	70.5	57	100	67	67	207	13
	176	194	325	7	69		63	100	67		80	98
Fibrinogen com	238	206.5	509	24	189	158	219	35	182	152.5	228	46
In PBS	175		196	54	127		184	45	123		141	81

Table S2. DLS results with duplicates of all particles without pre-coating.

4. Zetapotential of particles in the different protein fractions

Figure S5. Zetapotential of PS in the different protein fractions with and without separation of unbound protein, representing hard and soft corona (see table below).

Figure S6. Zetapotential of PS-COOH in the different protein fractions with and without separation of unbound proteins, representing hard and soft protein corona (see table below).

Figure S7. Zetapotential of $PS-NH_2$ in the different protein fractions with and without separation of unbound proteins, representing hard and soft protein corona (see table below).

Table S3. Index of Figure S5-S7.

1	Particle				
2	Particle centrifugated				
3	Particle / F _{Plasma-IgG} mixture				
4	3 centrifugated				
5	Particle / F _{IgG} mixture				
6	5 centrifugated				
7	Particle / F _{Plasma-lgG-HSA} mixture				
8	7 centrifugated				
9	Particle / HSA mixture				
10	9 centrifugated				
11	Particle / FPlasma-HSA mixture				
12	11 entrifugated				

5. Dependency of NP stability on protein concentration

Figure S8. Autocorrelation function at $\Theta = 60^{\circ}$ of PS-COOH in $F_{Plasma-w/o-IgG}$ including data points (•), force fit (red) and fit with aggregate formation (blue) From A to D, the protein amount per given surface area was increased by a factor of 16.

6. Influence of protein amount used for pre-coating on particle stability against aggregation in concentrated human plasma

Figure S9. ACF at Θ = 30° including data points, force fit and fit with aggregation in concentrated human plasma of A) PS-COOH, B) PS-COOH coated with F_{Plasma-w/o-IgG} as described in the manuscript, C) PS-COOH coated with twice the amount of proteins, D) PS-COOH coated with thrice the amount of proteins and D) PS-COOH coated with four times the amount of proteins.