Supporting Information

Kinetics and Mechanisms of Gas Phase Reactions of Hexenols with Ozone

Xiaoxiao Lin,¹ Qiao Ma,^{1,3} Chengqiang Yang,^{1,2} Xiaofeng Tang, ¹ Weixiong Zhao,¹

Changjin Hu,¹ Xuejun Gu,¹ Bo Fang,¹ Yanbo Gai,^{1,*} Weijun Zhang,^{1,2,*}

- ¹ Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- ² School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China

³University of Science and Technology of China, Hefei 230026, China

* Corresponding author:

- Prof. Weijun Zhang: wjzhang@aiofm.ac.cn
- Dr. Yanbo Gai: gaiyanbo@aiofm.ac.cn

SUMMARY:

11 pages, including 9 Figures.

Figure Captions:

- **Fig. S1** Concentration measurement of (E)-2-hexen-1-ol by GC/FID in absence of O₃ (values used here were from the integrated peak areas, which were proportional to the concentration of the measured hexenol).
- Fig. S2 Pseudo-first-order plots for O_3 reactions with different concentrations of (E)-3-hexen-1-ol (in molecule cm⁻³).
- Fig. S3 Pseudo-first-order plots for O_3 reactions with different concentrations of (E)-4-hexen-1-ol (in molecule cm⁻³).
- Fig. S4 Pseudo-first-order plots for O₃ reactions with different concentrations of (Z)-2-hexen-1-ol (in molecule cm⁻³).
- Fig. S5 Pseudo-first-order plots for O₃ reactions with different concentrations of (Z)-3-hexen-1-ol (in molecule cm⁻³).
- Fig. S6 Pseudo-first-order plots for O_3 reactions with different concentrations of (Z)-4-hexen-1-ol (in molecule cm⁻³).
- **Fig. S7** Structures of the hexenols optimized at the BH&HLYP/6-31+G(d,p) level of theory.
- Fig. S8 Schematic potential energy surface for the reactions of (E)-3-hexen-1-ol and (Z)-3-hexen-1-ol with O₃ at the BH&HLYP/6-31+G(d,p) level of theory (in kcal/mol).
- Fig. S9 Schematic potential energy surface for the reactions of (E)-4-hexen-1-ol and (Z)-4-hexen-1-ol with O₃ at the BH&HLYP/6-31+G(d,p) level of theory (in kcal/mol).

Fig. S1

Wall loss experiments were studied by measuring the decrease of the integrated peak areas using a GC/FID (GC7820A, Agilent Technologies). As can be seen from Fig.S1, within the typical time span of the O_3 reaction experiments (less than half an hour) in this work, the decrease of the integrated peak areas measured by GC/FID was below 0.2% of their initial values, which could be neglected. Even after 2 hours, the decrease was still smaller than 3% of their initial values. So, the wall loss of (E)-2-hexen-1-ol in our experiments could be negligible.

Fig. S2

Fig. S3


```
Fig. S4
```



```
Fig. S5
```



```
Fig. S6
```


