SUPPORTING INFORMATION

Aqueous self-assembly of short hydrophobic peptides containing norbornene amino acid into supramolecular structure of spherical shape

Alessandro Ruffoni, ${ }^{[a]}$ Maria V. Cavanna, ${ }^{[b]}$ Simona Argentiere, ${ }^{[b]}$ Silvia Locarno, ${ }^{[a]}$ Sara Pellegrino, ${ }^{[a]}$ Maria Luisa Gelmi, ${ }^{[a]}$ Francesca Clerici * $[a]$
${ }^{a}$ Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica " Alessandro Marchesini", Via Venezian 21, 20133 Milano, Italy ${ }^{\text {b }}$ Fondazione Filarete, V. Ortles 22, 20139 Milano, Italy.

Table of contents

General Experimental Methods 2
NOESY and ROESY experiments in $\mathrm{CD}_{3} \mathrm{OH}$ and in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ 3
Assignment of the stereochemistry of the norbornene scaffold 6
Evaluation of ${ }^{3} J_{\mathrm{NH}-\mathrm{H} \alpha}$ at $300 \mathrm{~K}^{\circ}$ in $\mathrm{CD}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ for peptides 1 and 2 8
Magnetic nonequivalence 8
Temperature dependence of amide chemical shift ($\Delta \delta / \Delta T$) 10
Preparation and characterization of peptide assemblies 14
Determination of critical aggregation concentrations (CACs) of 1 and 2 14
Synthetic procedure 15
$\left(1 R^{*}, 2 R^{*}, 4 R^{*}\right)$-ethyl 2-nitrobicyclo[2.2.1]hept-5-ene-2-carboxylate (4); ($1 R^{*}, 2 S^{*}, 4 R^{*}$)-ethyl 2-
nitrobicyclo[2.2.1]hept-5-ene-2-carboxylate (5) 15
2,2,2-trifluoroacetate((S)-1-((1-(((S)-1-amino-1-oxopropan-2-yl)amino)-2-methyl-1-oxopropan-2- yl)amino)-1-oxopropan-2-aminium (9) 15
$\left(1 R^{*}, 2 S^{*}, 4 R^{*}\right.$)-ethyl 2 -aminobicyclo[2.2.1]hept-5-ene-2-carboxylate (6); ($1 R^{*}, 2 R^{*}, 4 R^{*}$)-ethyl 2-
aminobicyclo[2.2.1]hept-5-ene-2-carboxylate (7) 15
($\left.1 S^{*}, 2 S^{*}, 4 S^{*}\right)$-2-((tert-butoxycarbonyl)amino)bicyclo[2.2.1]hept-5-en-2-carboxylic acid (8) 16
(1S,2S,4S)-2-amino-N-((R)-1-((1-(((R)-1-amino-1-oxopropan-2-yl)amino)-2-methyl-1-oxopropan-2- yl)amino)-1-oxopropan-2-yl)bicyclo[2.2.1]hept-5-ene-2-carboxamide (12 and 13) 17
(1S*,2S*,4S*)-2-((S)-2-acetamidopropanamido)-N-((R)-1-((1-(((R)-1-amino-1-oxopropan-2-yl)amino)-2- -2-
methyl-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)bicyclo[2.2.1]hept-5-ene-2-carboxamide (1, 2). 18
RF-HPLC 1-2 19
Fid 1H-NMR, 13C-NMR 20
Compound 6 20
Compound 7 21
Compound 8SI 22
Compound 8 23
Compound 10-11 24
Compound 12-13 25
Compound $1 \mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ 26
Compound $2 \mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ 27
Compound $1 \mathrm{CD}_{3} \mathrm{OH}$ 28
Compound $2 \mathrm{CD}_{3} \mathrm{OH}$ 29
Compound $1 \mathrm{CD}_{3} \mathrm{CN}$ 30
Compound $2 \mathrm{CD}_{3} \mathrm{CN}$ 31

General Experimental Methods

Chemicals were obtained from commercial sources and used without further purification. Preparative RP-HPLC analyses were performed using a DENALI C-18 column ($10 \mathrm{~mm}, 250 _22$ mm). Two mobile phases were used: $\mathrm{A}=94.9 \%$ water, $5 \% \mathrm{MeCN}, 0.1 \% \mathrm{TFA}$; $\mathrm{B}=95 \% \mathrm{MeCN}, 4.9 \%$ water, 0.1% TFA. ESI mass spectra were recorded on an LCQ Advantage spectrometer. NMR spectroscopic analysis: NMR spectroscopic experiments were carried out on either 200 MHz spectrometer (200 and 50 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively), 500 MHz spectrometer (500 and 125 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively) or 300 MHz spectrometer (300 and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively) To take advantage of the magnetic field value, measurements that required temperatures higher than room temperature for observing coalescence were performed in an apparatus with a ${ }^{1} \mathrm{H}$ resonance frequency of 300 MHz spectrometer. 2D-NOESY experiments on peptides 2a and 2b were performed at different mixing times ($300,500 \mathrm{~ms}$). Chemical shifts are given in ppm relative to CDCl_{3} or $\mathrm{CD}_{3} \mathrm{CN}, \mathrm{CD}_{3} \mathrm{OD}$ as internal standards, and coupling constants J are reported in hertz (Hz). The MW mediated reaction were performed using MW reactor with IR temperature detector. The Dynamic Light Scattering (DLS) measurements were performed in low volume disposable cuvettes using a Malvern Zetasizer Nano ZS90 instrument, equipped with a light source wavelength at 633 nm and a fixed scattering angle of 90°. For Transmission Electron Miscroscopy (TEM) analysis, measurements were run with a FEI Tecnai G2 (FEI, Eindhoven, NL) instrument with an accelerating voltage of 200 kV .

NOESY and ROESY experiments in $\mathrm{CD}_{3} \mathrm{OH}$ and in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$

NOESY and ROESY experiments in $\mathrm{CD}_{3} \mathrm{OH}$ show a strong spatial proximity between $\mathrm{NH}, \mathrm{NH}(\mathrm{i}+1)$ for peptide 1 except for Aib4 and Ala5 NHs that are overlapped (Figure SI1a).
The analysis of $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{NH}$ region for peptide $\mathbf{1}$ allowed to identify strong $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}}-\mathrm{NH}_{\mathrm{i}+1}$ (Alal-NRBNH; Ala3-AibNH; Ala5- COH_{2}) and $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}}-\mathrm{NH}_{\mathrm{i}+3}$ diagnostic signals (Ala1-Aib4 and Ala3- CONH_{2}) characterizing the helical structure. $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}}-\mathrm{NH}_{\mathrm{i}+2}$ signals between Ala1-Ala3 and Ala3-Ala5 ${ }^{1}$ (Figure SI2a) confirmed the formation of a 3_{10}-helix.
Unfortunately NRB2, Aib4 and Ala3 NHs signals are overlapped in peptide 2. NOEs are detected both at N-terminus (NH-Ala1/NH-NBR2, s) and at C-terminus (NH-Ala5/CONH2, s) (Figure SI1b) as well as $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}}-\mathrm{NH}_{\mathrm{i}+3}$ and $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}}-\mathrm{NH}_{\mathrm{i}+2}$ proximity between Ala3- CONH_{2} and Ala3-Ala5, respectively (SI2b). Taking together these data we hypothesize the formation of a 3_{10}-helix structure also for the peptide 2

Figure SI1 ROESY experiment analysis of $\mathrm{N}_{\mathrm{i}}, \mathrm{N}_{\mathrm{i}+1}$ region in $\mathrm{CD}_{3} \mathrm{OH}$ for a) peptide $\mathbf{1}(16 \mathrm{mg} / \mathrm{mL})$; b) peptide $2(18 \mathrm{mg} / \mathrm{mL})$

[^0]

Figure SI2. NOESY experiment analysis of $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{NH}$ region for peptide $\mathbf{1}(16 \mathrm{mg} / \mathrm{mL})$ and $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OH}(18 \mathrm{mg} / \mathrm{mL})$ a) peptide $\mathbf{1}$; b) peptide $\mathbf{2}$
The experiment in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ for peptide 1 showed the $\mathrm{NH}-\mathrm{NH}$ proximity between Aib4-Ala5 and Ala5- CONH_{2} and the lack of cross peak between Ala1-NRB2 (Figure SI3a). As a confirmation of a helical conformation only at C terminus, $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}}-\mathrm{NH}_{\mathrm{i}+3}$ and $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}}-\mathrm{NH}_{\mathrm{i}+2}$ spatial proxymities (Ala3CONH_{2} and Ala3-Ala5, respectively) are detected (Figure SI4a).
Regarding peptide 2, all the NH-NH cross peaks are visible (Figure SI3b). $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}}-\mathrm{NH}_{\mathrm{i}+3}$ cross peak is detected only for Ala3- CONH_{2} (signals of Ala1 H^{α} and Ala3 H^{α} are overlapped, Figure SI4b). These data confirm the formation of a helical structure but the less intensity of the signals in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ compared to $\mathrm{CD}_{3} \mathrm{OH}$ indicates a less stable helix secondary structure.

Figure SI3. NOESY experiment analysis of $\mathrm{N}, \mathrm{N} \mathrm{i}, \mathrm{i}+1$ for peptide $\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O} ;(16 \mathrm{mg} / \mathrm{mL})$ a) peptide 1; ROESY experiment analysis of $\mathrm{N}_{\mathrm{i}}, \mathrm{N}_{\mathrm{i}+1}$ region in for peptide $\mathbf{2}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$; $(16 \mathrm{mg} / \mathrm{mL})$ b) peptide 2

Figure SI4: NOESY experiment analysis of $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{NH}$ region for peptide $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$., (16 $\mathrm{mg} / \mathrm{mL}$) a) peptide $\mathbf{1}$; b) peptide 2 Further evidences of the helical conformation in $\mathrm{CD}_{3} \mathrm{OH}$ are given by $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}}-\mathrm{C}^{\beta}{ }_{i+3}$ cross peaks between Ala1-Aib4 (Figure SI5a and b), respectively for $\mathbf{1}$ and 2. Only peptide 2 presents such signals in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ (Figure SI 5 c)

Figure SI5. NOESY experiment analysis of $\mathrm{C}^{\alpha} \mathrm{H}_{\mathrm{i}^{-}} \mathrm{C}^{\beta} \mathrm{H}_{\mathrm{i}+3}$ cross peaks a) peptide $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OH}$, (16 $\mathrm{mg} / \mathrm{mL})$; b) peptide $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OH}$, ($18 \mathrm{mg} / \mathrm{mL}$) c) peptide $\mathbf{2}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}(16 \mathrm{mg} / \mathrm{mL})$.

Assignment of the stereochemistry of the norbornene scaffold

The NOE analysis $\left(\mathrm{CD}_{3} \mathrm{OH}\right.$ and $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$, Figure SI6) of norbornene core allowed to tentatively assign the absolute stereochemistry of this scaffold in peptide $\mathbf{1}$ and $\mathbf{2}$. Peptide $\mathbf{1}$ shows a spatial proximity between Ala5NH-NRB2H3 but no proximity between Ala5NH-NRB2H1 that, as expected, is detected in compound 2. This is in agreement with the crystal structure of similar peptides already published by us RSC Advances (2015), 5(41), 32643-32656 and the computational model of the two peptides $\mathbf{1}$ and $\mathbf{2 .}{ }^{2}$ In fact, in compound 1, the distances between Ala5NHNRB2H3 is $3.4 \AA$ while for Ala5NH-NRB2H1 $\approx 5.7 \AA$. On the other hand, the distances between Ala5NH-NRB2H3 and Ala5NH-NRB2H1 in compound 2 are $5.4 \AA$ and $\approx 3.7 \AA$, respectively.

[^1]As a further confirmation, peptide $\mathbf{1}$ shows a very intense NOE between Ala3NH-NRB2H1 (computed distance: $2.9 \AA$) and signals of very low intensity between Ala3NH-NRB2H3 and Ala3NH-NRB2H7 (computed distance: $4.4 \AA$). Peptide 2 does not present any Ala3NH-NRB2H7 cross peak (computed distance: $5.0 \AA$) but NOEs, comparable in intensity, between Ala3NHNRB2H1 and Ala3NH-NRB2H3 (computed distance: $3.9 \AA$ and $3.1 \AA$, respectively). Finally, the NOE between Ala5 $\mathrm{H}^{\beta}-\mathrm{NRB} 2 \mathrm{H} 1$ is suitable only for 2 (computed distance: $3.8 \AA$ compared to $5.9 \AA$ for 1)

Figure SI6 NOESY experiment analysis a) peptide $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OH} ;(16 \mathrm{mg} / \mathrm{mL})$ b) ROESY experiment analysis peptide $\mathbf{2}$ in $\left.\mathrm{CD}_{3} \mathrm{OH},(16 \mathrm{mg} / \mathrm{mL}) \mathrm{c}\right)$ NOESY experiment analysis of peptide $\mathbf{1}$ in $\left.\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O} ;(16 \mathrm{mg} / \mathrm{mL}) \mathrm{d}\right)$ NOESY experiment analysis peptide 2 in $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}(16 \mathrm{mg} / \mathrm{mL})$

Evaluation of ${ }^{3} J_{\mathrm{NH}-\mathrm{H} \alpha}$ at $\mathbf{3 0 0} \mathrm{K}^{\circ}$ in $\mathrm{CD}_{\mathbf{3}} \mathrm{OH}$ and $\mathrm{H}_{\mathbf{2}} \mathrm{O} / \mathrm{D}_{\mathbf{2}} \mathrm{O}$ for peptides 1 and 2
Table TS1. ${ }^{3} J_{\mathrm{NH}-\mathrm{H} \alpha}$ values (Hz) for Ala1, Ala3, Ala5 of peptides $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$

solvent	$J_{\text {NH-H }}$ values (Hz)		
	Ala1	Ala3	Ala5
$\mathbf{1 ~ C D}$	3	OH	5.00
5.10	7.31		
$\mathbf{1} \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$	5.68	5.58	6.48
$\mathbf{2} \mathrm{CD}_{3} \mathrm{OH}$	4.21	-a	6.87
$\mathbf{2} \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$	5.10	5.16	6.51

${ }^{\text {a. }}$ overlapped

Magnetic nonequivalence

The evaluation of the ${ }^{13} \mathrm{C}$-magnetic nonequivalence (MNE) of the signals related to the diastereotopic methyl groups of Aib4 was performed by HSQC experiments both in $\mathrm{CD}_{3} \mathrm{CN}$, $\mathrm{CD}_{3} \mathrm{OD}$ and $\mathrm{D}_{2} \mathrm{O}$ at critical aggregate concentration ($13 \mathrm{mg} / \mathrm{mL}$) as shown in Table TS2. The values reported largely demonstrate how in $\mathrm{CD}_{3} \mathrm{CN}$ and $\mathrm{CD}_{3} \mathrm{OD}$ both peptides present a stable asymmetric secondary structure that fits perfectly with the hypothesized helix. The same analysis in $\mathrm{D}_{2} \mathrm{O}$ gave very low $\Delta \delta$ values. According to literature data, ${ }^{3}$ taking in account that chiral residues of Ala3 and Ala5 could induce an MNE in Aib4 not higher than 0.5 ppm in $\mathrm{D}_{2} \mathrm{O}$, these results confirm the absence of a stable helix structure for $\mathbf{1}$ and a transition helix/random coil structure for $\mathbf{2}$.

Table TS2. ${ }^{13} \mathrm{C}$ magnetic nonequivalence (MNE) of Aib4

solvent	Peptide 1		Peptide 2	
	Aib4 δ	MNE δ	Aib4 δ	MNE δ
$\mathrm{CD}_{3} \mathrm{CN}$	$26.22,22.92$	3.38	$26.50,22.81$	3.69
$\mathrm{CD}_{3} \mathrm{OD}$	$25.15,23.21$	1.94	$25.59,22.80$	2.79
$\mathrm{D}_{2} \mathrm{O}$	$24.22,23.97$	0.25	$24.50,23.65$	0.85

Figure SI7 HSQC experiment analysis of peptide $\mathbf{1}$ in a) $\mathrm{CD}_{3} \mathrm{OD}$, b) $\mathrm{D}_{2} \mathrm{O}$, c) $\mathrm{CD}_{3} \mathrm{CN}$; $(16 \mathrm{mg} / \mathrm{mL})$

[^2]
a)

Figure SI8 HSQC exper
b)

Figure SI8 HSQC experiment analysis of peptide 2 in a) $\mathrm{CD}_{3} \mathrm{OD}$, b) $\mathrm{D}_{2} \mathrm{O}$, c) $\mathrm{CD}_{3} \mathrm{CN}$, $(16 \mathrm{mg} / \mathrm{mL})$

Temperature dependence of amide chemical shift $(\Delta \delta / \Delta T)$

Figure SI9 ${ }^{1} \mathrm{H}$ NMR of peptide 1 in $\mathrm{CD}_{3} \mathrm{OH} \Delta \mathrm{T} 273{ }^{\circ} \mathrm{K}-333{ }^{\circ} \mathrm{K}$, $(32 \mathrm{mg} / \mathrm{mL})$
Table TS3. $\Delta \delta / \Delta T$ of peptide $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OH}$

${ }^{\circ} \mathrm{K}$	Ala-1	NBR F1	Ala-3	Aib-4	Ala-5	CONH2	CONH2
273	8,52	8,01	8,06	7,89	7,85	7,44	7,26
283	8,45	7,93	8,02	7,86	7,82	7,41	7,17
293	8,39	7,86	7,99	7,82	7,78	7,39	7,09
303	8,32	7,79	7,95	7,79	7,75	7,36	7
313	8,25	7,72	7,91	7,75	7,72	7,33	6,91
323	8,19	7,66	7,88	7,72	7,68	7,31	6,84
333	8,12	7,6	7,84	7,69	7,65	7,28	6,76
$\Delta \delta / \Delta T$	0,006666667	0,006833333	0,003666667	0,003333333	0,003333333	0,002666667	0,008333333
	7	7	4	3	3	3	8

Figure SI10 ${ }^{1} \mathrm{H}$ NMR of peptide 2 in $\mathrm{CD}_{3} \mathrm{OH} \Delta \mathrm{T} 273{ }^{\circ} \mathrm{K}-318{ }^{\circ} \mathrm{K}$, $(26 \mathrm{mg} / \mathrm{mL})$
Table TS4. $\Delta \delta / \Delta T$ of peptide $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OH}$

${ }^{\circ} \mathrm{K}$	Ala-1	NBR F2	Ala-3	Aib-4	Ala-5	CONH2	CONH2
273	8,47	8,1	8,02	7,97	7,88	7,59	7,32
283	8,41	8,03	7,98	7,95	7,85	7,59	7,25
298	8,32	7,92	7,92	7,91	7,81	7,58	7,15
303	8,29	7,88	7,89	7,92	7,79	7,57	7,11
313	8,24	7,82	7,86	7,89	7,77	7,56	7,05
318	8,21	7,78	7,84	7,88	7,75	7,55	7,02
$\Delta \delta / \Delta T$	0,005777778	0,007111111	0,004	0,002	0,002888889	0,000888889	0,006666667
	6	7	4	2	3		1

Figure SI11 ${ }^{1} \mathrm{H}$ NMR of peptide 1 in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} \Delta \mathrm{T} 278{ }^{\circ} \mathrm{K}-353{ }^{\circ} \mathrm{K}$, $(13 \mathrm{mg} / \mathrm{mL})$
Table TS5. $\Delta \delta / \Delta T$ of peptide 1 in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$

${ }^{\circ} \mathrm{K}$	Ala-1	NBR F1	Ala-3	Aib-4	Ala-5	CONH2	CONH2
278	8,38	8,23	8,09	8,12	7,92	7,49	7,19
283	8,34	8,19	8,06	8,09	7,89	7,47	7,16
293	8,26	8,11	8	8,03	7,84	7,43	7,09
300	8,2	8,05	7,96	7,99	7,81	7,4	7,05
313	8,1	7,95	7,88	7,91	7,74	7,35	6,97
323	8,03	7,87	7,83	7,85	7,69	7,31	6,91
333	7,97	7,8	7,78	7,8	7,65	7,27	6,86
353	7,84	7,67	7,68	7,7	7,56		
$\Delta \delta / \Delta T$	0,0072	0,007466667	0,005466667	0,0056	0,0048	0,004	0,006
	7	7	5	6	5	4	6

Figure SI12 ${ }^{1} \mathrm{H}$ NMR of peptide 2 in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} \Delta \mathrm{T} 278{ }^{\circ} \mathrm{K}-353{ }^{\circ} \mathrm{K},(16 \mathrm{mg} / \mathrm{mL})$
Table TS6. $\Delta \delta / \Delta T$ of peptide 2 in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$

	Ala-1	NBR F2	Ala-3	Aib-4	Ala-5	CONH2	CONH2
278	8,42	8,19	8,11	7,96	7,9	7,47	7,24
283	8,33	8,1	8,03	7,92	7,86	7,43	7,16
293	8,27	8,04	7,98	7,89	7,83	7,41	7,1
300	8,21	7,98	7,93	7,86	7,78	7,38	7,05
313	8,11	7,88	7,85	7,8	7,74	7,33	6,96
323	8,04	7,81	7,8	7,76	7,7	7,3	6,91
333	7,97	7,75	7,74	7,72	7,66	7,27	6,85
353	7,84	7,63	7,65	7,63	7,57		
75	0,007733333	0,007466667	0,006133333	0,0044	0,0044	0,003636364	0,007090909
	8	7	6	4	4	4	7

Preparation and characterization of peptide assemblies

The oligopeptides 1 and 2 were previously frozen by dipping in liquid nitrogen and then freezedried (Telstar Cryodos 50). After the addition of 1.5 mg of either $\mathbf{1}$ or $\mathbf{2}$ or their mixture (1:1) in 300 $\mu \mathrm{L}$ of bidistilled water (MilliQ, Millipore), a clear solution appeared, indicating the high solubility of the tested oligopeptides. The mixture was stirred for 1 minute at room temperature (RT), then the product was filtered (pore size $1.2 \mu \mathrm{~m}$, Sartorius filters) in order to remove any large impurities that could interfere with further analyses. Finally the sample was allowed to stabilize for few seconds. The particle size measurements were repeated for three runs at RT and the data reported as the average hydrodynamic diameter. The stability of self-assembled supramolecular structures in foetal bovine serum (FBS) was tested by DLS. To this aim, the mixture of $\mathbf{1}$ and $\mathbf{2}$ was added with pure FBS. As a control, FBS was analyzed (orange line). For Transmission Electron Miscroscopy (TEM) analysis, the mixture of $\mathbf{1}$ and $\mathbf{2}$ was further diluted 1:100 in water and deposited on a formvarcoated copper grid, then negative staining was performed using saturated uranyl acetate in 20% ethanol.

Determination of critical aggregation concentrations (CACs) of 1 and 2.

A series of solutions were prepared varying the concentration of either $\mathbf{1}$ or $\mathbf{2}$ and then analyzed by DLS. The mean size and the count rate of all the tested solutions of $\mathbf{1}$ and $\mathbf{2}$ are reported in Tables TS7 and TS8, respectively.

Table TS7.

concentration $(\mathrm{mg} / \mathrm{mL})$	mean size (nm)	count rate (kcps)
26.6	478.1	10.8
13.3	155.9	140.2
5.0	357.0	405.2
2.5	167.9	71.5
1.25	207.4	37.5
0.5	354.3	20.0

Table TS8.

concentration $(\mathrm{mg} / \mathrm{mL})$	mean size (nm)	count rate (kcps)
42.5	1004	702.7
26.0	330.5	1096.3
13.0	536.5	496.5
5.0	322.9	145.8
2.0	420.9	145.3
0.5	181.5	28.4

Synthetic procedure

$\left(1 R^{*}, 2 R^{*}, 4 R^{*}\right)$-ethyl 2-nitrobicyclo[2.2.1]hept-5-ene-2-carboxylate (4); ($1 R^{*}, 2 S^{*}, 4 R^{*}$)-ethyl 2nitrobicyclo[2.2.1] hept-5-ene-2-carboxylate (5)

To a solution of ethyl 2-nitroacetate in THF (0.1 M), freshly distilled cyclopentadiene (5 eq .), formaldehyde (5 eq .) and acetic acid (5 eq .) were added The reaction was brought to $50{ }^{\circ} \mathrm{C}$ and allowed to react until completion (12h; TLC: AcOEt: n-hexane, 1: 4, detected by Pancaldi reagent: $\left.\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MoO}_{4}, \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}\right)$. The solvent was evaporated and the crude was taken up with $\mathrm{H}_{2} \mathrm{O}$ (saturated NaCl solution). The aqueous phase was extracted 3 times with ethyl acetate. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under reduce pressure. The crude was purified by flash column chromatography (n-hexane 100% to AcOEt / n-hexane 1:10) affording compounds $\mathbf{4}$ and 5 in mixture (ratio: $85: 15 ; 83-88 \%$ yield) as yellow oil on a scale of $2,75 \mathrm{~g} .{ }^{4}$

2,2,2-trifluoroacetate(S)-1-((1-(((S)-1-amino-1-oxopropan-2-yl)amino)-2-methyl-1-oxopropan-2-yl)amino)-1-oxopropan-2-aminium (9)

A modification of the procedure previously reported by our group ${ }^{5}$ was required for the obtainment of 9. Trifluroacetic acid 99% (TFA, 30 eq.) was added dropwise under stirring to a solution of tripeptide BocNHAla-Aib-AlaNH $\mathrm{H}_{2}(1 \mathrm{eq}$.$) in dry \mathrm{DCM}(0.1 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. The solution was warmed up at room temperature and let to react for 4 hours. The reaction was monitored by Tlc ($\mathrm{MeOH}: \mathrm{DCM}$, $1: 10$; detected by ninhydrin). Upon consumption of the starting material the solvent was evaporated at reduced pressure and wash several time with n-hexane / DCM / $\mathrm{Et}_{2} \mathrm{O}$ to afford the desired compound 9 as white solid (93% yield) on a scale of 1 g . Characterization already reported ${ }^{6}$
$\left(1 R^{*}, 2 S^{*}, 4 R^{*}\right)$-ethyl 2-aminobicyclo[2.2.1]hept-5-ene-2-carboxylate (6); ($1 R^{*}, 2 R^{*}, 4 R^{*}$)-ethyl 2-aminobicyclo[2.2.1]hept-5-ene-2-carboxylate (7)

Compounds $\mathbf{4}$ and $\mathbf{5}$ were dissolved in THF (0.1 M) and zinc in powder (20 eq.) was added under vigorous stirring. The reaction was brought to $0^{\circ} \mathrm{C}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}(1 \mathrm{M}, 20 \mathrm{eq}$.) was added dropwise. Then the reaction was warmed to room temperature and left to react until disappearance of the starting material (12 hours; TLC: AcOEt / n-hexane 1: 1, detected by ninhydrin). The resulting

[^3]suspension was filtered under vacuum and the solvent was evaporated under reduced pressure. The remaining aqueous phase was basified to pH 8 with solid NaHCO_{3} and then extracted three times with AcOEt. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The crude was purified by flash column chromatography (EtOAc : n-hexane, $1: 6+0,8 \%$ TEA) affording two separated fraction $6(15 \%)$ and $7(85 \%)$ as yellow oils with a yield of $70-80 \%$ on a scale of 2.00 g .

Compound 6: $\delta_{\text {н }}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.7,3.0), 5.93$ (1 H, dd, J 5.7, 2.9), 4.12 (2 H, dq, J 0.9, 7.1), $2.87(1 \mathrm{H}, \mathrm{s}), 2.79(1 \mathrm{H}, \mathrm{s}), 2.30(2 \mathrm{H}, \mathrm{s}), 2.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.8,12.6), 1.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.6), 1.60-1.46 ($2 \mathrm{H}, \mathrm{m}$), 1.25 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1$); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 175.50, 139.81, 133.46, 65.28, $60.94,53.10,47.64,42.45,39.12,14.42 . \operatorname{IR}(\mathrm{NaCl}): \mathrm{v}=2971,2243,1732,1473,1383 \mathrm{~cm}^{-1 ;}(+)$ ESIMS (m/z) : $[\mathrm{M}+\mathrm{H}]^{+}$182.0. Anal.Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}$ (181.1): C, 66.27; H, 8.34; N, 7.73; O, 17.66; found C, 66.32; H, 8.39; N, 7.78 .
Compound 7: $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.7,3.0), 6.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.7,3.1)$, $4.20(2 \mathrm{H}$, q, J 7.1), $2.97(1 \mathrm{H}, \mathrm{s}), 2.88(1 \mathrm{H}, \mathrm{s}), 2.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.3,3.8), 1.83(2 \mathrm{H}, \mathrm{s}), 1.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9)$, 1.49 (1 H , ddt, J $1.7,3.3,8.8$), $1.29(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1), 0.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.3,3.2) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $176.41,140.54,133.40,65.20,61.31,52.69,49.14,43.22,41.05,14.37 . \operatorname{IR}(\mathrm{NaCl}): \mathrm{v}=2975,2237$, 1734, 1476, $1393 \mathrm{~cm}^{-1} ;(+)$ ESI-MS (m/z) : $[\mathrm{M}+\mathrm{H}]^{+}$182.2; Anal.Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}$ (181.1): C, 66.27; H, 8.34; N, 7.73; O, 17.66; found C, 66.25; H, 8.31; N, 7.77.
$\left(1 S^{*}, 2 S^{*}, 4 S^{*}\right)$-2-((tert-butoxycarbonyl)amino)bicyclo[2.2.1]hept-5-en-2-carboxylic acid (8)

Compound $7(0.1 \mathrm{M})$ was dissolved in a KOH saturated MeOH solution. The temperature was brought to $70^{\circ} \mathrm{C}$ and the mixture was left to react under stirring until disappearance of the starting material (4 h ; TLC MeOH : DCM, 1:5; detected by ninhydrin). The solvent was evaporated and wash a couple of time with a mixture of EtOAc : n-hexane $1: 1$, than the dry solid was treated with HCl (saturated methanol solution) at $0^{\circ} \mathrm{C}$ until pH 2. The precipitate (KCl) was filtered under vacuum and the solvent was removed under reduced pressure at room temperature. The crude so obtained (compound 8SI) was dissolved in a mixture of $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=1: 1(0.1 \mathrm{M})$ and $\mathrm{Boc}_{2} \mathrm{O}(1.2$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.5 eq.) were added. The reaction was warmed up to $50^{\circ} \mathrm{C}$ and monitored by TLC ($\mathrm{MeOH}: \mathrm{DCM}, 1: 6$). Two additions of the same equivalents of $\mathrm{Boc}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were made every 6 hours. Upon the consumption of starting material the organic solvent was evaporated at reduced pressure and the crude was dissolved at $0^{\circ} \mathrm{C}$ in HCl 1 M until $\mathrm{pH}=2$. The precipitate was filtered under vacuum providing compound $\mathbf{8}$ in a pure as white solid on a scale of 1.72 g (Yield: 90% over two steps). (In alternative if is not possible precipitate the compound the crude was dissolved in HCl 1 M and extracted 3 times with EtOAc. The crude was purified by flash column cromatography ($\mathrm{MeOH}: \mathrm{DCM}, 1: 50$ to $1: 30$), providing compound $\mathbf{8}$ as a pure white solid(Yield: 82% over two steps)).

Compound 8SI, $\left(1 R^{*}, 2 R^{*}, 4 R^{*}\right)$-2-carboxybicyclo[2.2.1]hept-5-en-2-aminium chloride. white solid (m.p. 199-197 ${ }^{\circ} \mathrm{C}$), $\delta_{\text {н }}\left(200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 6.41(1 \mathrm{H}$, dd, $J 5.6,3.1), 6.07(1 \mathrm{H}$, dd, J 5.6, 2.9), $2.95(1 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{s}), 2.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.0,3.5), 1.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0), 1.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.0,1.4)$, 1.12 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.9,3.1$). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 177.80$, 142.81, 132.58, 66.45, 50.71, 49.20, 42.71, 37.19. (+)ESI-MS (m/z) : $[\mathrm{M}+\mathrm{H}]^{+}$189.8 Anal.Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{ClNO}_{2}$ (189.6): C, 50.67; H, 7.56; N, 7.39; O, 16.87; found C, $50.55 ; \mathrm{H}, 7.63$; N, 7.31.

Compound 8, white solid (m.p. 178-179 ${ }^{\circ} \mathrm{C}$), $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 6.33$ (1 H , dd, J 5.4, 3.0), 6.07 $(1 \mathrm{H}, \mathrm{s}), 3.30(1 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{s}), 2.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.5,3.7), 1.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8), 1.47$ - 1.41 (10 $\mathrm{H}, \mathrm{m}), 1.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.5,3.2) . \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 177.45,156.50,139.45,133.53$, 79.05 , $64.90,50.29,47.51,42.19,39.63,27.54$. (+ ESI-MS (m / z) : $[\mathrm{M}+\mathrm{Na}]^{+}$276.1. Anal.Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4}$ (253.1): C, 61.64; H, 7.56; N, 5.53; O, 25.27; found C, 61.69; H, 7.61; N, 5.58. $\operatorname{IR}(\mathrm{KBr}): \mathrm{v}=3308,2992,2975,2957,1699,1619 \mathrm{~cm}^{-1}$

Tert-butyl ((1S*,2S*,4S*)-2-(((R)-1-((1-(((R)-1-amino-1-oxopropan-2-yl)amino)-2-methyl-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)carbamoyl)bicyclo[2.2.1]hept-5-en-2-yl)carbamate (10 and 11)

To a solution of compound $\mathbf{8}$ in dry $\operatorname{DCM}(0,1 \mathrm{M})$, HOAt (1.15 eq.$)$ and EDC (1.15 eq.$)$ were added under nitrogen at $0^{\circ} \mathrm{C}$ and let react under stirring at $0^{\circ} \mathrm{C}$ for 1 h 30 min . Afterwards the TFA salt of tripeptide 9 (1.15 eq.) and DIPEA (2.3 eq.) were added. Additional DIPEA was used, if needed, to reach $\mathrm{pH}=8$ and then the reaction mixture was let react at room temperature for 16 h (TLC: MeOH : DCM, $1: 8$, detected by ninhydrin). Upon the consumption of starting material $\mathbf{8}$ the reaction mixture was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, saturated NaHCO_{3} and brine. The $\mathrm{NH}_{4} \mathrm{Cl}$, saturated aqueous phase was extracted 3 time with DCM and the combined organic phases dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated at reduced pressure. The crude was recrystallized with DCM / n-hexane affording a mixture of the two diastereoisomers $\mathbf{1 0}$ and $\mathbf{1 1}$ as white solid ($85-90 \%$ yield) on a scale of 0.5 g . (in alternative was purified by flash chromatography ($\mathrm{DCM}: \mathrm{MeOH}, 30: 1$ to $10: 1$).

Compounds $\mathbf{1 0}$ and $\mathbf{1 1} \delta_{\text {н }}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72(2 \mathrm{H}, \mathrm{s}, \mathbf{1 0}+\mathbf{1 1}), 7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9,11)$, 7.52 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathbf{1 0}$), $7.33(2 \mathrm{H}, \mathrm{bs}, \mathbf{1 0}+\mathbf{1 1}), 6.99(2 \mathrm{H}, \mathrm{bs}, \mathbf{1 0}+\mathbf{1 1}), 6.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0,2.3,10), 6.40$ (1 H, dd, J 5.7, 2.9, 11), 6.19 (1 H, dd, J 5.3, 2.5, 10), 6.03 (1 H , dd, J 5.5, 3.9, 11), 5.37 (2 H, bs, $\mathbf{1 0}+\mathbf{1 1})$, 5.20 ($1 \mathrm{H}, \mathrm{s}, 11$), $5.10(1 \mathrm{H}, \mathrm{s}, \mathbf{1 0})$, 4.37 (2 H , dq, J 7.4, 7.4 , 10+11), $4.08-3.93$ ($2 \mathrm{H}, \mathrm{m}$, $\mathbf{1 0}+\mathbf{1 1})$, $3.48(1 \mathrm{H}, \mathrm{bs}, \mathbf{1 0}), 2.98(1 \mathrm{H}, \mathrm{bs}, \mathbf{1 1})$, 2.92-2.91 ($2 \mathrm{H}, \mathrm{m}, \mathbf{1 0}+\mathbf{1 1}$), 2.17-2.06 ($4 \mathrm{H}, \mathrm{m}$, $\mathbf{1 0}+\mathbf{1 1}), 1.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathbf{1 0}+\mathbf{1 1}), 1.57-1.42(44 \mathrm{H}, \mathrm{m}, \mathbf{1 0}+\mathbf{1 1}) . \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.66$ (10), 176.51 (11), 175.69 (10+11), 174.83 (10+11), 174.08 (11), 173.93 (10), 156.81 (10), 156.70 (11), 144.58 (10), 140.28 (11), 134.92 (11), 131.12 (10), 81.64 (11), 81.52 (10), 67.05 (10), 64.65 (11), 57.43 (10+11), 52.73 (10+11), 52.15 (10+11), 49.93 (11), 49.73 (10), 47.76 (10+11), 43.08 (10), 42.45 (11), 42.13 (10), 39.79 (10), 28.45 (10+11), 27.85, 23.78 (10), 27.76, 23.73 (11), 17.59 (10), 17.50 (11), 17.34 (10), 17.18 (11). (+)ESI-MS (m/z) : $[\mathrm{M}+\mathrm{Na}]^{+}$502.3. Anal.Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{6}$ (479.2): C, $57.60 ; \mathrm{H}, 7.78$; N, 14.60; O, 20.02; found C, $57.65 ; \mathrm{H}, 7.79 ; \mathrm{N}, 14.65$. IR(KBr): $\mathrm{v}=3426,3313,2981,2941,1660,1531 \mathrm{~cm}^{-1}$
(1S,2S,4S)-2-amino-N-((R)-1-((1-(((R)-1-amino-1-oxopropan-2-yl)amino)-2-methyl-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)bicyclo[2.2.1]hept-5-ene-2-carboxamide (12 and 13)

Compounds 10 and 111 were suspended in $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{M}$ from the tap) in a sealed tube for micro waves reactor. The sample was irradiated under magnetic stirring by microwaves for 20 minutes at $120^{\circ} \mathrm{C}$. The reaction was monitored by TLC (MeOH: DCM, $1: 8$, detected by ninhydrin). If not
finished, another round of 20 minutes was performed. Upon consumption of the starting material, the solvent was evaporated at reduced pressure. The oily residue was treated with cold $\mathrm{Et}_{2} \mathrm{O}$ affording a mixture of compounds $\mathbf{1 2}$ and $\mathbf{1 3}$ as white solid (91%) on a scale of 0.25 g .

Compounds 12 and $13 \delta_{\text {H }}\left(200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 6.45(2 \mathrm{H}, \mathrm{dd}, J 5.6,3.0, \mathbf{1 2}+\mathbf{1 3}), 6.21(2 \mathrm{H}, \mathrm{dd}, J$ $4.0,1.6,12+13), 4.22(2 \mathrm{H}, \mathrm{dd}, J 14.8,7.4,12+13), 4.13(2 \mathrm{H}, \mathrm{dd}, J 14.5,7.2,12+13), 2.94(1 \mathrm{H}, \mathrm{s}$, 12), $2.87(3 \mathrm{H}, \mathrm{s}, \mathbf{1 2 + 1 3 + 1 3}), 2.59-2.42(2 \mathrm{H}, \mathrm{m}, \mathbf{1 2 + 1 3}), 1.93(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathbf{1 2 + 1 3}), 1.52-1.34$ $(26 \mathrm{H}, \mathrm{m}, \mathbf{1 2}+\mathbf{1 3}), 0.93(2 \mathrm{H}$, dd, $J 12.1,2.6, \mathbf{1 2 + 1 3}) . \delta_{\text {с }}\left(50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 178.63(\mathbf{1 2}), 178.61$ (13), 176.93 (12), 176.92 (13), 175.47 (12), 175.39 (13), 174.46 (12), 174.40 (13), 140.78 (12), 140.78 (13), $133.46(12), 133.38$ (13), 64.30 (12), 64.27 (13), 56.66 (12), 56.61 (13), 52.85 (12), 52.62 (13), 51.07 (12), 50.91 (13), 49.67 (12+13), 48.92 (12), 48.74 (13), 43.06 (12), 43.03 (13), 41.39 (12), 41.31 (13), 24.81 (12), 24.75 (13), $23.83(\mathbf{1 2 + 1 3) , ~} 16.50$ (12+13), 16.07 (12), 15.95 (13). (+)ESI-MS (m/z) : $[\mathrm{M}+\mathrm{Na}]^{+}$402.4. Anal.Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4}$ (379.2): C, 56.97; H, 7.70; N, 18.46; O, 16.87; found C, 56.99; H, 7.75; N, 18.51. IR(KBr): v = 3312, 3060, 2980, 2939, 1657, $1529 \mathrm{~cm}^{-1}$

(1S*,2S*,4S*)-2-((S)-2-acetamidopropanamido)-N-((R)-1-((1-(((R)-1-amino-1-oxopropan-2-yl)amino)-2-methyl-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)bicyclo[2.2.1]hept-5-ene-2carboxamide (1, 2)

The inseparable mixture of compounds $\mathbf{1 2}$ and $\mathbf{1 3}$ was dissolved in THF (0.1 M) in a sealed tube for microwaves reactor and EEDQ (1.1 eq.) and (L)-NHAc-Ala-OH (1. eq.) were added. The sample was irradiated under magnetic stirring by microwaves for 30 minutes at $60^{\circ} \mathrm{C}(80$ Watt) using the air compressing cooling system to keep down the temperature. The reaction was monitored by TLC ($\mathrm{MeOH}: \mathrm{DCM}, 1: 8$, detected by ninhydrin). If not finished another round of 30 minutes was performed. Upon consumption of the starting material, cold $\mathrm{Et}_{2} \mathrm{O}$ was added to precipitate the mixture of peptide and was decanted affording compounds $\mathbf{1}$ and $\mathbf{2}$ in mixture as a white solid (88%). The two diastereoisomers were separated by HPLC (inverse phase, gradient from $95 \% \mathrm{H}_{2} \mathrm{O}$, $5 \% \mathrm{CH}_{3} \mathrm{CN}+0,1 \%$ of TFA (5 min) to $80 \% \mathrm{H}_{2} \mathrm{O}, 20 \% \mathrm{CH}_{3} \mathrm{CN}+0,1 \%$ of TFA (40 min .) affording two fractions: $\mathbf{1}$ (retention time 35^{\prime}) and $\mathbf{2}$ (retention time 37^{\prime}) The reaction was performed with comparable yield from 50 mg to 100 mg .

1(first fraction) $\alpha_{D}{ }^{\mathrm{MeOH}}=-8.3 . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O}+\mathrm{D}_{2} \mathrm{O}\right) 8.14(1 \mathrm{H}, \mathrm{d}, J 5.6), 7.97(1 \mathrm{H}, \mathrm{s}), 7.90(2$ H, s), $7.74(1 \mathrm{H}, \mathrm{d}, J 6.4), 7.34(1 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{s}), 6.40(1 \mathrm{H}, \mathrm{dd}, J 5.7,3.1), 6.02(1 \mathrm{H}, \mathrm{dd}, J$ $5.8,3.2$), $4.23-4.02(3 \mathrm{H}, \mathrm{m}), 3.33(1 \mathrm{H}, \mathrm{d}, J 1.0), 2.87(1 \mathrm{H}, \mathrm{s}), 2.29(1 \mathrm{H}, \mathrm{dd}, J 13.2,3.7), 1.93$ (3 H, s), $1.60(1 \mathrm{H}, \mathrm{d}, J 9.1), 1.47(1 \mathrm{H}, \mathrm{dd}, J 9.2,1.5), 1.39(6 \mathrm{H}, \mathrm{d}, J 5.8), 1.34(3 \mathrm{H}, \mathrm{d}, J 7.4), 1.31$ (1 $\mathrm{H}, \mathrm{d}, J 3.2$), $1.29(3 \mathrm{H}, \mathrm{d}, J 7.3), 1.25(3 \mathrm{H}, \mathrm{d}, J 7.3) . \delta_{\mathrm{c}}\left(126 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O}+\mathrm{D}_{2} \mathrm{O}\right)$ 178.27, 177.11, $176.95,175.49,175.21,174.03,141.04,133.04,65.38,56.70,50.91,50.08,49.83,49.04,48.16$, 41.81, 40.42, 24.35, 24.00, 21.67, 16.47, 16.21, 15.82. (+)ESI-MS (m/z) : [M+Na] ${ }^{+} 515.4$. Anal.Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{6}$ (492.3): C, 56.08; H, 7.37; N, 17.06; O, 19.49; found C, 56.01; H, 7.32; $\mathrm{N}, 17.10 . \mathrm{IR}(\mathrm{KBr}) \mathrm{v}=3429,3066,2981,2945,1658,1533,1198 \mathrm{~cm}^{-1}$

2 (second fraction) $\alpha_{\mathrm{D}} \mathrm{MeOH}=+2 . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O}+\mathrm{D}_{2} \mathrm{O}\right) 8.16(1 \mathrm{H}, \mathrm{d}, J 5.1), 7.93(1 \mathrm{H}, \mathrm{s}), 7.88$ ($1 \mathrm{H}, \mathrm{d}, J 5.2$), $7.81(1 \mathrm{H}, \mathrm{s}), 7.75(1 \mathrm{H}, \mathrm{d}, J 6.5), 7.33(1 \mathrm{H}, \mathrm{s}), 7.00(1 \mathrm{H}, \mathrm{s}), 6.41(1 \mathrm{H}, \mathrm{dd}, J 5.8$, 3.1), $6.04(1 \mathrm{H}, \mathrm{dd}, J 5.8,3.1), 4.22-4.15(1 \mathrm{H}, \mathrm{m}), 4.10-4.04(2 \mathrm{H}, \mathrm{m}),, 3.40(1 \mathrm{H}, \mathrm{s}), 2.89(1 \mathrm{H}$, s), $2.24(1 \mathrm{H}, \mathrm{dd}, J 13.4,3.7), 1.97(3 \mathrm{H}, \mathrm{s}), 1.60(1 \mathrm{H}, \mathrm{d}, J 9.2), 1.48(1 \mathrm{H}, \mathrm{d}, J 9.1), 1.43(6 \mathrm{H}, \mathrm{d}, J$ 3.8), 1.41-1.40 ($1 \mathrm{H}, \mathrm{m}$), 1.39 ($3 \mathrm{H}, \mathrm{d}, J 7.4$), $1.32(3 \mathrm{H}, \mathrm{d}, J 7.4), 1.28(3 \mathrm{H}, \mathrm{d}, J 7.4) . \delta_{\mathrm{C}}$ (126 MHz , $\mathrm{D}_{2} \mathrm{O}$) $178.25,177.22,177.13,175.90,175.44,174.21,140.75,133.19,65.05,56.63,51.16,50.38$, 49.96, 49.03, 48.09, 41.73, 40.21, 24.50, 23.65, 21.53, 16.35, 15.83, 15.70. (+)ESI-MS (m/z) : $[\mathrm{M}+\mathrm{Na}]^{+}$515.4. Anal.Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{6}$ (492.3): C, 56.08 ; H, 7.37; N, 17.06; O, 19.49; found C, $56.12 ; \mathrm{H}, 7.35 ; \mathrm{N}, 16.98 . \mathrm{IR}(\mathrm{KBr}) \mathrm{v}=3430,3066,2981,2943,1656,1534, \mathrm{~cm}^{-1}$

RF-HPLC 1-2

Fid 1H-NMR, 13C-NMR
Compound 6

Compound 7

Compound 8SI

Compound 8

Compound 10-11

Compound 12-13

Compound $1 \mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$

Compound $2 \mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$

Compound $1 \mathrm{CD}_{\mathbf{3}} \mathrm{OH}$

m

\square

$\stackrel{\circ}{\oplus}$

Compound $2 \mathrm{CD}_{3} \mathrm{OH}$

Compound $1 \mathrm{CD}_{3} \mathrm{CN}$

Compound $2 \mathrm{CD}_{3} \mathrm{CN}$

[^0]: ${ }^{1}$ K. Wutricht, NMR of Protein and Nucleic Acids, Wiley:New York, 1986;

[^1]: ${ }^{2}$ I. Maffucci, S. Pellegrino, J. Clayden, A. Contini J. Phys. Chem. B, 2015, 119,1350-1361

[^2]: ${ }^{3}$ G. Jung, H. Bruckner, R. Bosch, V. Winter, H. Schaal,J. Strahle, Liebigs Ann. Chem., 1983, 7, 1096-1106.

[^3]: ${ }^{4}$ Wade, P. A.; Murray, Jr., K. J.; Shah-Patela, S.; Carroll, P. J. Tetrahedron Letters. 2002, 43, 2585-2588
 ${ }^{5}$ Ruffoni A.; Contini A.; Soave R.; Lo Presti L.; Esposto I.; Maffucci I.; Nava D.; Pellegrino S.; Gelmi M. L. and Clerici F. RSC Adv., 2015, 5, 32643-32656
 ${ }^{6}$ Pellegrino S.; Contini A.; Clerici F.; Gori A.; Nava D. and Gelmi M. L. Chem.-Eur. J., 2012, 18, 8705;

