Supporting Information

A Novel Highly Dispersive Magnetic Nanocatalyst

In Water: Glucose as Efficient and Green Ligand for Immobilization of Copper(II) for Cycloaddition of Alkynes to Azides

Firouz Matloubi Moghaddam*, Vahid Saberi, Sepideh Kalhor, Seyed Ebrahim Ayati

Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, PO Box 111559516 Tehran, Iran

E-mail Address: matloubi@sharif.edu

CONTENTS

General data	II
General procedure for the synthesis of triazole	II
Spectroscopic characterization of products	III
¹ H-NMR and ¹³ C-NMR spectra of the products	V

1. General remarks

All chemicals were purchased from Merck and used without any additional purification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker (Avance DRX-500) spectrometer using CDCl₃ as solvent at room temperature. Chemical shifts δ were reported in ppm relative to tetramethylsilane as an internal standard. FTIR spectra of samples were taken using an ABB Bomem MB-100 FTIR spectrophotometer. The structures of the prepared materials were observed using a Philips XL30 scanning electron microscope (SEM), thermo gravimetric analysis (TGA) was acquired under a nitrogen atmosphere with a TGA Q 50 thermo gravimetric analyzer. CHN analysis was done by LECO Truspec.

2. General procedure for the synthesis of triazole

A glass tube was charged with sodium ascorbate (30 mg, 10 mol%), phenyl acetylene (0.5mmol), benzyl bromide (0.5 mmol), sodium azide (0.5 mmol), catalyst (5 mg, 0.5 mol%) and H2O (3 mL). The reaction mixture was stirred at 50 °C for 1 h and the completion of the reaction was monitored by TLC (EtOAC/ n-hexane, 25:75). In each case, after completion, the product was worked up and purified according to the following procedure: The mixture was diluted with ethyl acetate and water. The organic layer was washed with brine, dried over MgSO4 and concentrated under reduced pressure using a rotary evaporator. The residue was purified by recrystallization from ethyl acetate/ n-hexane. In order to reuse the catalyst, the nanomagnetic Cu catalyst was collected using an external magnet, washed with methanol and dried overnight to be ready for the next run

Spectroscopic characterization of the products

1-Phenyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)ethanone¹:

Colourless solid; ¹H NMR (400 MHz, CDCl₃) δ = 5.93 (s, 2H), 7.36-7.90 (m, 6H), 8.01 (d, *J* = 7.2 Hz, 2H); 8.04 (s, 1H); 8.06 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 55.4, 121.4, 125.8, 128.2, 128.8, 129.2, 130.5, 133.9, 134.6, 148.2, 190.2

4-Phenyl-(1,2,3-triazole-1-yl)-acetic acid ethyl ester:

¹H NMR (400 MHz, CDCl₃) δ = 1.33 (3H, t, *J* =7.6 Hz), 4.26 (2H, q, *J* =7.6 Hz), 5.20 (2H, s), 7.34-7.46 (3H, m), 7.85-7.87 (2H, m, ortho to Ar), 7.93 (1H, s); ¹³C NMR (100MHz, CDCl₃) δ = 14.0, 50.9, 62.4, 121.0, 125.8, 128.3, 128.8, 130.3, 148.2, 166.3;

1-(4-bromobenzyl)-4-phenyl-1*H*-1,2,3-triazole¹:

¹H NMR (400 MHz, CDCl₃) δ = 5.69 (2H, s), 7.31-7.36 (1H, m), 7.40-7.44 (4H, m), 7.76 (s, 1 H), 7.81 (2H, d, *J* = 6.8 Hz), 8.22 (2H, d, *J* = 6.8Hz,); ¹³C NMR (100 MHz, CDCl₃) δ = 53.1, 119.7, 124.0, 124.2, 125.7, 128.4, 128.5, 128.8, 130.0, 141.7, 148.0, 148.6

1-(4-bromobenzyl)-4-pentyl-1*H*-1,2,3-triazole:

¹H NMR (400 MHz, CDCl₃) δ = 0.85 (3H, t, *J* = 6.9 Hz), 1.27-1.30 (4 H, m), 1.59-1.63 (2H, m), 2.65 (2H, t, *J* = 7.4 Hz), 5.41 (2H, s), 7.09 (2H, d, *J* = 6.3 Hz), 7.21 (1H, s), 7.46 (2H, d, *J* = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ = 13.9, 22.3, 25.6, 29.0, 13.9, 22.3, 25.6, 29.0, 31.4, 53.2, 120.5, 122.6, 129.5, 132.1, 134.0

1-Benzyl-4-pentyl-1*H*-1,2,3-triazole²:

¹H NMR (400 MHz, CDCl₃) δ = 0.87 (3H, t, *J* = 6.9 Hz), 1.29-1.33 (4H, m), 1.61-1.65 (2H, m), 2.67 (2H, t, *J* = 7.4 Hz), 5.49 (2H, s), 7.17 (1H, s), 7.25 (2H, d, *J* = 8.0 Hz), 7.34-7.38 (3H, m,); ¹³C NMR (100 MHz, CDCl₃) δ = 13.9, 22.3, 25.6, 29.0, 31.4, 53.9, 120.4, 127.9, 128.5, 129.0, 135.0, 148.9

N=N

¹H-NMR and ¹³C-NMR spectra of the products

C. 8.066 F. 8.005 F. 9.005 F. 9.005 F. 9.005 F. 7.708 F. 7.708</p

٧

VI

i.

ppm 180 160 140 120 100 80 60 40 20