Supplementary Material

Mechanisms into Dehydroaromatization of Bio-derived Limonene to *p*-Cymene over Pd/HZSM-5 in presence and absence of H₂

Huimei Cui, Jingjing Zhang, Zhicheng Luo, Chen Zhao*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China Email: czhao@chem.ecnu.edu.cn

Condition	Time (min)	Conv. (%)	Yield (%)				Pressure
			Partial Hydrogenation	Full Hydrogenation	Dehydro- aromatization	Isomeriz ation	(bar) ^b
0 bar H ₂	0	7	1	0	1	5	
	30	19	1	0	3	15	
	60	19	1	0	2	16	2
	90	17	1	0	2	14	
	120	21	1	0	3	17	
2 bar H ₂	0	11	3	1	3	4	
	30	24	6	1	7	11	
	60	37	10	1	13	13	3
	90	46	12	1	19	14	
	120	54	15	1	24	14	
6 bar H2	0	24	7	1	5	10	
	30	42	13	1	12	16	
	60	62	21	2	24	15	6
	90	72	28	2	30	12	
	120	78	33	3	35	7	
10 bar H2	0	39	10	2	9	18	
	30	59	18	2	19	20	
	60	71	25	2	27	17	10
	90	83	34	4	33	11	
	120	83	34	4	34	10	
14 bar H ₂	0	34	11	2	10	11	
	30	64	24	4	25	11	
	60	86	38	8	36	3	14
	90	92	41	12	38	1	
	120	95	40	17	36	1	

Table S1. Limonene dehydroaromatization over Pd/HZSM-5 at different H2 pressure.^a

^a General conditions: 10 mL limonene, 0.02g 1% Pd/HZSM-5(258), 80 mL *n*-dodecane, 260 °C, stirring at 600 rpm. ^b This records the pressure for reactions lasting 2 h at working temperature.

Condition	Equations			
6 bar H ₂	$\frac{dc_1}{dt} = -k_1 \times c_1$ $\frac{dc_2}{dt} = k_1 \times c_1 - k_2 \times c_2 - k_9 \times c_2$ $\frac{dc_3}{dt} = k_9 \times c_2 - k_6 \times c_3$ $\frac{dc_4}{dt} = k_6 \times c_3$ $\frac{dc_5}{dt} = k_2 \times c_2$			
10 bar H ₂	$\frac{dc_1}{dt} = -k_1 \times c_1 + k_8 \times c_2$ $\frac{dc_2}{dt} = k_1 \times c_1 - k_8 \times c_2 - k_2 \times c_2 - k_9 \times c_2$ $\frac{dc_3}{dt} = k_9 \times c_2 - k_6 \times c_3$ $\frac{dc_4}{dt} = k_6 \times c_3$ $\frac{dc_5}{dt} = k_2 \times c_2$			
14 bar H2	$\frac{dc_1}{dt} = -k_1 \times c_1$ $\frac{dc_2}{dt} = k_1 \times c_1 - k_2 \times c_2 - k_9 \times c_2$ $\frac{dc_3}{dt} = k_9 \times c_2 - k_6 \times c_3$ $\frac{dc_4}{dt} = k_6 \times c_3$ $\frac{dc_5}{dt} = k_2 \times c_2$			

Table S2. Equations for different systems with additional 6, 10, or 14 bar hydrogen.^a

 a c_X refers to the concentration of compound X, and X represent the labelling numbers in Scheme 3..

Calculation Methods:

When the substrate limonene is 10 mL, and the density of limonene in atmosphere and room temperature was obtained as: $n = \frac{D \times V}{M} \quad (2)$

Where D and V are density and volume of limonene, respectively.

Accordingly, n (limonene) = 59.19 mmol.

Theoretical yield was also calculated as well.

Thermodynamic parameters for limonene dehydroaromatization at 260 $\,$ C was gained from HSC software from Table 3, K_{sp} = 2.26 \times 10^{10} .

$$\frac{n_{(p-cymene)}^{2}}{0.059 - n_{(p-cymene)}} = 2.26 \times 10^{10}$$

(3)

 $n \text{ (p-cymene)} \approx 0.059 \text{ mol.}$

The experimental yield was obtained: n (*p*-cymene) = $0.05919 \times 74\% = 0.0438$ mol = 43.8 mmol.