1	Electronic Supplementary Information For			
2	Promoting Mechanism of Pyridine N Doped Carbocatalyst for			
3	SO ₂ Oxidation			
4	Jieyuan Li ¹ , Jie Liu ² , Shi Yin ¹ , Yongjun Liu ¹ , Jianjun Li ^{1, 4} , Wanglai Cen ^{3, 4*} , Yinghao Chu ^{1, 4*}			
5	1. College of Architecture and Environment, Sichuan University, P.R. China;			
6	2. Resources and Environmental College, Chengdu University of Information Technology, P.R.			
7	China;			
8	3. Institute of New Energy and Low Carbon Technology, Sichuan University, P. R. China;			
9	4. National Engineering Research Center for Flue Gas Desulfurization, P. R. China;			
10				
11				
12	*Corresponding Authors:			
13	Dr. Wanglai Cen (cenwanglai@163.com)			
14	Prof. Yinghao Chu (chuyinghao@scu.edu.cn)			
15				

20 absorption.

2	1
4	I

Table S1 Total doping energy (E_d) and substep doping energy (E_s) for PyN.

Conf.	E _d , eV	E _s , eV
1N_VG	-2.06	-2.06
2N_VG	-2.44	-0.89
3N_VG	-4.01	-1.50
1N_DVG	-0.09	-0.09
2N_DVG	-1.55	-1.04
3N_DVG	-1.72	-0.77
4N_DVG	-3.56	-1.73

Figure S2 Optimized adsorption structures of O₂ on different PyN doped surfaces. Red, blue and
grey spheres represent O, N and C atoms. All lengths and energy are given in Å and eV,
respectively. Negative means heat release

Figure S3 Possible structures and energy of O₂ dissociation on 1N_VG. Total energy of the
initial configuration in (a) is set to be 0 eV as reference. The color coding is the same as Fig. S3.
Energy is given in eV and negative means heat release.

31

Figure S4 Possible structures and energy of O₂ dissociation on 2N_VG. Total energy of the
initial configuration in (a) is set to be 0 eV as reference. The color coding is the same as Fig. S3.
Energy is given in eV and negative means heat release.

Fig. S5 Catalytic oxidation of SO₂ on 2N_VG: (a) ODR1, (b) SOR1, (c) SOR2 and (d) ODR2. Blue, red, yellow and grey spheres represent N, O, S and C atoms. All the lengths and energy are given in Å and eV, respectively. Fig. S5d tested the second ODR on $1O/2N_VG$, the results indicates that O₂ is thermodynamically unfavorable, with an energy barrier of 1.60 eV and net energy of 1.03eV.

41

42 Figure S6 Possible structures and energy of O₂ dissociation on 3N_VG. Total energy of the
43 initial configuration in (a) is set to be 0 eV as reference. The color coding is the same as Fig. S3.
44 Energy is given in eV and negative means heat release.

46 Figure S7 Possible structures and energy of O₂ dissociation on 4N_DVG. Total energy of the
47 initial configuration in (a) is set to be 0 eV as reference. The color coding is the same as Fig. S3.
48 Energy is given in eV and negative means heat release.