Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Inorganic-organic hybrid sorbent for aromatic desulfurization of hydrocarbons: Regenerative adsorption based on charge-transfer complex

Mahsa Armaghan^a, Mostafa M. Amini^a*, Hamid R. Khavasi^a, Wen-Hua Zhang^{c,e}, Siek Weng Ng^d ^aDepartment of Chemistry, Shahid Beheshti University, G. C., Tehran, 198396311, Iran. E-mail: m-pouramini@sbu.ac.ir; Phone: +89-21-29903109; fax: +89-21-22431663.

^cInstitute of Materials Research and Engineering, A* STAR, 3 Research Link, 117602, Singapore ^dDepartment of Chemistry, University of Malaya, 50603, Kula Lumpur, Malaysia

Parameter	2d
Empirical formula	C ₂₀ H ₂₂ ClNO ₅ Si
Formula weight	419.93
Crystal size (mm)	0.30 imes 0.20 imes 0.01
Crystal color	Red/Plate
Temperature (K)	100(2)
Wavelength (Å)	0.71073
Crystal system	monoclinic
Space group	$P 2_l/c$
a (Å)	7.145(5)
b(A)	35.461(16)
c (Å)	10.506(7)
α(°)	90.00
β(°)	133.00(11)
γ()	90.00
$v(Å^3)$	1947(2)
Z	4
Absorption coefficient (mm ⁻¹)	0.290
Calculated density (mg/m ³)	1.433
F(000)	880
θ Range for data	2.89-25.00
Reflections collected	16740
Unique reflections [R(int)]	0.1717
Data/restrains/parameters	3434/126/254
Goodness-of-fit on F2	1.111
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.1825 wR2 = 0.4127

Table S1. X-ray crystallographic data for 2d

Scheme S1. The possible mechanism for functionalization of 1-chloro-5-((3-(triethoxysilyl)propyl)amino)anthracene-9,10-dione (2a, AQ-Cl).

Figure S1. TGA and DTA curves of 1,5-dichloro-4,8-dinitroanthraquinone (1c).

Figure S2. Experimental (blue) and simulated (red) powder X-ray diffraction pattern (PXRD) for the charge-transfer complex.

Table S2. X-ray Crystallographic data for CTC

Parameter	СТС
Empirical formula	$C_{28}H_{16}C_{12}N_2O_6S$
Formula weight	579.40
Crystal size (mm)	$0.35 \times 0.20 \times 0.10$
Crystal color	Orange/needle
Temperature (K)	298(2)
Wavelength (Å)	0.71073
Crystal system	Orthorhombic
Space group	P cnb
a (Å)	10.6317(8)
$b(\dot{A})$	14.5110(10)
c (Å)	16.1526(9)
α (°)	90.00
β(°)	90.00
γ (°)	90.00
$v(Å^3)$	2492.0(3)
Z	4
Absorption coefficient (mm ⁻¹)	0.394
Calculated density (mg/m ³)	1.544
F(000)	1184
θ Range for data	2.29 - 29.19
Reflections collected	11048
Unique reflections [R(int)]	0.0569
Data/restrains/parameters	3355/0/177
Goodness-of-fit on F2	0.979
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0610 wR2 = 0.1423

Figure S3. ²⁹Si CP/MAS NMR spectra of a) Si-MCM-41, and, b) AQ-NO₂@Si-MCM-41.

Figure S4.¹³C CP/MAS NMR spectrum of AQ-NO₂@Si-MCM-41.

Figure S5. X-ray diffraction patterns of Si-MCM-41 and AQ-NO₂@Si-MCM-41.

Figure S6. TGA-DTA curves of AQ-NO₂@Si-MCM-41.

Figure S7. UV-Vis spectrum of DBT before adsorption (a), after adsorption on AQ-NO₂@Si-MCM-41 (9, 7) (b) (c), DBT before adsorption (d), and after adsorption on AQ-NO₂@Si-MCM-41 (10, 8) (e) (f).

Figure S7 shows the UV-Vis absorption spectrum of a DBT and 4,6-DMDBT solution with an initial concentration of 20 mg/L (0.10 mM) before and after contact with the AQ-NO₂@Si-MCM-48 at different conditions. The intensities of the distinct peak of DBT and 4,6-DMDBT at 286 and at 284 nm respectively dropped significantly in the UV-Vis spectrum of the 4,6-DMDBT solution after contact with sorbent.

Figure S8. UV-Vis spectrum of anthracene before and after contact with AQ-NO2@Si-MCM-41

for two days at room temperature.

Figure S9. UV-Vis spectrum of naphthalene before and after contact with AQ-NO₂@Si-MCM-41.

Figure S10. UV-Vis spectrum of xylene before and after contact with AQ-NO₂@Si-MCM-41.

Figure S11. Simulated (red) and experimental (blue) powder X-ray diffraction pattern (PXRD) of 1,5-dichloro-4,8-dinitroanthraquinone (1c) generated after heating CTC to 200 °C under reduced pressure.