ELECTRONIC SUPPORTING INFORMATION

A PGSE NMR Approach to the Characterization of Single and Multi-Site

Halogen-Bonded Adducts in Solution

Gianluca Ciancaleoni, †* Alceo Macchioni, ‡ Luca Rocchigiani, ‡§ Cristiano Zuccaccia‡

† Departamento de Química, Universidade Federal de Santa Catarina, 88040-900

Florianópolis, SC, Brazil.

‡ Dipartimento di Chimica, Biologia e Biotecnologie, Universitá degli Studi di Perugia,

Via Elce di Sotto 8, I-06123, Perugia, Italy

§ School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK

e-mail address: g.ciancaleoni@ufsc.br

Equations for 1:1 adducts

For 1:1 adducts, the value of the association constant between a XB donor (D) and an XB acceptor (A) (K_a) can be estimated according to the Eq. S1 and S2:¹

$$V_H(D) = \alpha V_H^0(D) + (1 - \alpha) V_H^{agg}(D, A)$$
 Eq.S1

$$K_a = \frac{(1-\alpha)c(D)}{\alpha c(D) \times [c(A) - (1-\alpha)c(D)]}$$
Eq.S2

Where $V_{\rm H}(D)$ is the experimentally measured volume of D, $V_{\rm H}^{0}(D)$ is its volume in absence of any aggregation process, α is the molar fraction of free D and $V_{\rm H}^{\rm agg}(D,A)$ is the volume of the aggregate between the two species. Generally, $V_{\rm H}^{\rm agg}(D,A)$ is taken as the sum of $V_{\rm H}^{0}(D)$ and $V_{\rm H}^{0}(A)$. Clearly, similar equations can be derived if $V_{\rm H}(A)$ is measured instead of $V_{\rm H}(D)$.

¹⁹F NMR Titrations.

Figure S1. Trend of the chemical shift of the α -fluorine nuclei (-CF₂I) of **I1** (*C* = 24 mM) with [**Me₃Py**]. The limit value of δ (fitted) is -71.36 ± 0.04 ppm, the value of *K*_a is 0.85 ± 0.01 M⁻¹.

Figure S2. Trend of the chemical shift of the α -fluorine nuclei (-CF₂I) of **I1** (*C* = 20 mM) with [**DABCO**]. The limit value of δ (fitted) is -73.25 ± 0.03 ppm, the value of K_a is 37.2 ± 0.4 M⁻¹.

Equations for 1:2 adducts

For systems containing both 1:1 and 1:2 adducts (one acceptor and two donor moieties), the concentration of free D has been calculated with the equation S3:²

$$[D]^{3}*B1 + [D]^{2}*B2 + [D]*B3 - C_0(D)$$
 Eq.S3

with

$$B1 = K_{a1} * K_{a2}$$

$$B2 = K_{a1} * [2K_{a2} * C_0(A) - K_{a2} * C_0(D) + 1]$$

$$B3 = K_{a1} * [C_0(A) - C_0(D)] + 1$$

The resulting data ([D]; $V_{\rm H}(A)$) has been fitted with the equation S4

$$V_{\rm H}(A) = (V_{\rm H}^{0}(A) + V_{\rm H}^{0}(A,D) * K_{a1} * [D] + V_{\rm H}^{0}(A,2D) * K_{a1} * K_{a2} * [D]^{2}) / (1 + K_{a1} * [D] + K_{a1} * K_{a2} * [D]^{2})$$
Eq.S4

PGSE Studies

Figure S3. Experimental hydrodynamic volume of DABCO (C = 8.8 mM) at different concentrations of I2. The solid red line represents the best fit. $K_{a1} = 11.0 \pm 0.2$ and $K_{a2} = 2.1 \pm 0.1$ M⁻¹.

Figure S4. Experimental hydrodynamic volume of **NBS** (C = 3.9 mM) at different concentrations of **HMTA**. The solid red line represents the best fit. $K_{a1} = 161 \pm 27$ M⁻¹.

DFT Calculations

Table S1. Thermodynamic values (in kcal/mol) for the different adducts with respect to the isolated components (T = 298 K).

	ΔΕ	ΔΗ	ΔS	ΔG
		Gas-phase		
hmta-nbs	-10.2	-8.7	-33.9	1.4
hmta-2nbs	-19.2	-15.8	-72.3	5.7
hmta-3nbs	-26.8	-24.4	-123.7	12.4
Solvent = Chloroform				
hmta-nbs	-11.6	-8.6	-43.3	4.3
hmta-2nbs	-20.5	-15.1	-75.3	7.3
hmta-3nbs	-28.0	-24.0	-128.7	14.3

Figure S5. 3D contour plot of the change of electronic density upon formation of the adduct **HMTA/NBS** (1:2). Blue (red) isosurfaces identify regions in which the electron density increases (decreases). Density value at the isosurfaces: ±0.001 au

hmta

N	-0.225450	0.209732	0.805324
С	0.281224	-1.148763	1.016255
Η	1.370530	-1.137199	0.929686
Η	0.016630	-1.472031	2.026003
С	0.120963	0.609126	-0.561732
Η	1.209291	0.633096	-0.657273
Η	-0.266009	1.614733	-0.744135
С	-1.686588	0.161484	0.900240
Η	-1.964711	-0.154735	1.908649
Η	-2.085253	1.164404	0.728738
N	-0.259576	-2.112653	0.053033
N	-2.288761	-0.760093	-0.067821
N	-0.423735	-0.299366	-1.575001
С	-1.879406	-0.331558	-1.408229
Η	-2.304189	-1.019487	-2.143401
Η	-2.278783	0.668029	-1.596703
С	-1.720363	-2.089786	0.169284
Η	-2.143124	-2.788992	-0.556481
Η	-2.000306	-2.420274	1.172621
С	0.088345	-1.643229	-1.291207
Η	1.176413	-1.634602	-1.391988
Н	-0.323143	-2.339838	-2.025866

nbs

- Br 0.729002 4.717195 20.422614
- N 0.112583 5.752173 21.816432
- C 0.751268 6.934901 22.206479
- O 1.734359 7.393730 21.699469
- C -0.051650 7.477070 23.366306
- Н -0.382806 8.483482 23.113681
- H 0.611304 7.579128 24.224482
- C -1.193744 6.495857 23.589777
- H -1.187088 6.034467 24.576415
- H -2.181173 6.938415 23.465264
- C -1.025721 5.407918 22.554417
- O -1.704769 4.438374 22.372929

hmta-nbs

Br	0.0000	-0.0000	-2.5332
N	-0.0020	-0.0263	-4.4407
С	1.1599	0.1027	-5.1914
0	2.2683	0.2485	-4.7487
С	0.7518	0.0224	-6.6483
Н	1.2953	-0.7985	-7.1146
Η	1.0804	0.9313	-7.1508
С	-0.7566	-0.1654	-6.6441
Η	-1.3007	0.6356	-7.1429
Η	-1.0851	-1.0941	-7.1093
С	-1.1639	-0.1883	-5.1849
0	-2.2716	-0.3203	-4.7362
N	0.0000	0.0000	0.0000
N	-1.0553	-0.9829	1.9536
С	-1.2884	0.3717	2.4621
Н	-2.2667	0.7154	2.1193
Н	-1.2911	0.3427	3.5534
N	-0.2660	1.3255	2.0174
С	-0.2640	1.3386	0.5596
Н	0.5069	2.0226	0.1983
Н	-1.2341	1.6804	0.1924
С	-1.0393	-0.9218	0.4981

Η	-2.0094	-0.5786	0.1322
Η	-0.8445	-1.9156	0.0893
N	1.3384	-0.5116	1.9585
С	1.0395	0.8301	2.4670
Η	1.0487	0.8037	3.5583
Η	1.8158	1.5193	2.1280
С	0.2714	-1.4127	2.4054
Η	0.4693	-2.4155	2.0207
Η	0.2765	-1.4504	3.4965
С	1.3077	-0.4619	0.5034
Η	2.0786	0.2205	0.1395
Н	1.5030	-1.4559	0.0952

hmta-2nbs

Br	0.0000	0.0000	2.5860
Ν	0.0190	0.0555	4.4777
С	-0.5688	-0.9284	5.2678
0	-1.1452	-1.9011	4.8613
С	-0.3360	-0.5256	6.7082
Η	0.1996	-1.3310	7.2090
Η	-1.3020	-0.4454	7.2050
С	0.4364	0.7829	6.6543
Η	-0.0837	1.6192	7.1192
Η	1.4176	0.7330	7.1244
С	0.6238	1.0915	5.1845
0	1.1805	2.0383	4.6975
Br	3.7331	-0.4046	-2.9609
N	5.4859	-0.5364	-3.6652
С	6.6185	-0.2662	-2.9023
0	6.6218	0.0651	-1.7476
С	7.8126	-0.4702	-3.8099
Η	8.4627	-1.2207	-3.3622
Η	8.3867	0.4550	-3.8383
С	7.2427	-0.8794	-5.1595
Η	7.4885	-0.1907	-5.9666
Η	7.5636	-1.8661	-5.4906

С	5.7389	-0.8966	-4.9849
0	4.9067	-1.1644	-5.8094
N	-0.9398	-0.9754	-2.0164
С	-1.3839	0.3640	-2.4160
Н	-1.4060	0.4186	-3.5056
Н	-2.3930	0.5298	-2.0354
N	-0.5037	1.4205	-1.9049
Ν	0.0000	0.0000	0.0000
С	0.8422	1.1751	-2.4079
Η	1.5236	1.9362	-2.0228
Η	0.8417	1.2258	-3.4981
Ν	1.3455	-0.1518	-2.0035
С	0.4156	-1.1743	-2.5186
Η	0.4139	-1.1217	-3.6088
Η	0.7790	-2.1586	-2.2166
С	-0.4714	1.3235	-0.4507
Η	-1.4734	1.4874	-0.0501
Η	0.1956	2.0863	-0.0445
С	-0.8999	-1.0259	-0.5585
Η	-0.5520	-2.0084	-0.2333
Η	-1.9022	-0.8611	-0.1594
С	1.3469	-0.2198	-0.5380
Η	2.0228	0.5405	-0.1420
Н	1.7042	-1.2024	-0.2237

hmta-3nbs

Br	0.0000	0.0000	-2.6277
Ν	0.0212	-0.0338	-4.5101
С	-1.0825	0.3305	-5.2779
0	-2.1394	0.7053	-4.8485
С	-0.6782	0.1547	-6.7252
Η	-0.7917	1.1113	-7.2336
Η	-1.3816	-0.5291	-7.1987
С	0.7532	-0.3589	-6.6997
Η	0.8739	-1.3417	-7.1539
Η	1.4650	0.2978	-7.1980
С	1.1315	-0.4580	-5.2376
0	2.1721	-0.8316	-4.7686
Ν	0.0000	0.0000	0.0000
Br	1.4036	3.4825	2.9813
Ν	2.0047	5.1327	3.6640
С	2.3880	6.1907	2.8416
0	2.3841	6.1788	1.6407
С	2.7884	7.3262	3.7570
Η	2.1710	8.1926	3.5234
Η	3.8143	7.6097	3.5258
С	2.6020	6.8051	5.1738
Η	3.5210	6.7855	5.7580

Η	1.8797	7.3732	5.7585
С	2.0927	5.3876	5.0309
0	1.8200	4.6112	5.9058
Ν	-1.3171	-0.3435	2.0005
С	-0.3881	-1.4214	2.3971
Η	-0.3701	-1.4780	3.4866
Η	-0.7668	-2.3658	2.0036
Ν	0.9614	-1.1837	1.8941
С	1.4294	0.0937	2.4211
Η	2.4332	0.2999	2.0468
Η	1.4657	0.0481	3.5108
Ν	0.5437	1.2034	2.0238
С	-0.8048	0.9255	2.5300
Η	-0.7766	0.8737	3.6198
Η	-1.4755	1.7347	2.2356
С	0.8991	-1.0842	0.4396
Η	0.5345	-2.0252	0.0248
Η	1.8956	-0.8910	0.0386
С	-1.3398	-0.2626	0.5374
Η	-2.0162	0.5371	0.2297
Η	-1.7105	-1.2064	0.1337
С	0.4901	1.2652	0.5598
Η	1.4900	1.4661	0.1712
Η	-0.1718	2.0780	0.2556
Br	-3.6804	-0.9125	2.9703

Ν	-5.3580	-1.3758	3.6929
С	-6.3626	-0.4418	3.9308
С	-5.6787	-2.6869	4.0317
С	-7.0941	-2.6615	4.5683
Η	-7.0850	-3.0636	5.5804
Н	-7.7025	-3.3429	3.9749
0	-6.2853	0.7388	3.7224
0	-4.9497	-3.6358	3.9220
С	-7.5405	-1.2094	4.4927
Η	-7.8052	-0.7793	5.4578
Н	-8.3981	-1.0466	3.8414

¹ G. Ciancaleoni, C. Zuccaccia, D. Zuccaccia and A. Macchioni, *Organometallics*, 2007, **26**, 3624. ² P. Thordarson, *Chem. Soc. Rev.*, 2011, **40**, 1305.