Electronic Supplementary Information

Label-free biosensor based on dsDNA-templated copper nanoparticles for highly sensitive and selective detection of NAD⁺

Jia Ge, * Zhen-Zhen Dong, Lin Zhang, Qi-Yong Cai, Dong-Mei Bai, and Zhao-Hui Li*

*Corresponding author.

College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

Tel.: +86-371-67780037.

E-mail address: jiage0630@hnu.edu.cn ; zhaohui.li@zzu.edu.cn.

Fig. S1. Typical TEM image of CuNPs templated by extended Probe 1.

Fig. S2. Agarose gel electrophoresis demonstration of the detection of NAD⁺ based on dsDNA-templated CuNPs and DNA ligation reaction. lane 1, Probe 1; lane 2, Probe 1 + Probe 2; lane 3, Probe 1 + *E. coli* ligase + KF polymerase + dNTPs; lane 4, Probe 1 + *E. coli* ligase + NAD⁺ + KF polymerase + dNTPs. (Probe 1 , 1 μ M; Probe 2, 1 μ M; *E. coli* ligase, 25 U/mL; NAD⁺, 400 nM; KF polymerase, 10 U/mL; dNTPs, 100 μ M).

Fig. S3. Effect of the length of AT-TA on the formation of dsDNA-templated fluorescent CuNPs. F and F_0 represent the fluorescence intensities of dsDNA-templated CuNPs platform in the presence and absence of NAD⁺, respectively. (Probe 1, 500 nM; Probe 3, 500 nM; Probe 4, 500 nM; Probe 5, 500 nM; Probe 6, 500 nM; *E. coli* ligase, 25 U/mL; KF polymerase, 10 U/mL; NAD⁺, 400 nM; dNTPs, 100 μ M; ascorbate, 5 mM; Cu²⁺, 200 μ M).

Fig. S4. Optimization of Cu^{2+} concentration on the formation of fluorescent CuNPs. The results were the average of three repetitive experiments with error bars indicating the standard deviation. (Probe 1, 500 nM; ascorbate, 5 mM).

Fig. S5. Optimization of ascorbate concentration on the formation of fluorescent CuNPs. The results were the average of three repetitive experiments with error bars indicating the standard deviation. (Probe 1, 500 nM; Cu^{2+} , 200 μ M).

Fig. S6. (A) Optimization of dNTPs concentration. The concentration of KF polymerase was 10 U/mL. (B) Optimization of KF polymerase concentration. The concentration of dNTPs was 100 μ M. F and F₀ are fluorescence intensities of dsDNA-templated CuNPs platform in the presence and absence of NAD⁺. (Probe 1, 500 nM; E. coli ligase, 25 U/mL; NAD⁺, 400 nM; ascorbate, 5 mM; Cu²⁺, 200 μ M).

Fig. S7. Effect of E. coli ligase concentration on fluorescence intensity. The results were the average of three repetitive experiments with error bars indicating the standard deviation. (Probe 1, 500 nM; KF polymerase, 10 U/mL; NAD⁺, 400 nM; dNTPs, 100 μ M; ascorbate, 5 mM; Cu²⁺, 200 μ M).

Fig. S8. The effect of the reaction time of ligase on the change of the fluorescence intensity of the NAD⁺ sensing system. F and F_0 represent the fluorescence intensities of dsDNA-templated CuNPs platform in the presence and absence of NAD⁺, respectively. Error bars were the standard deviation of three measurements. (Probe 1, 500 nM; *E. coli* ligase, 25 U/mL; KF polymerase, 10 U/mL; NAD⁺, 400 nM; dNTPs, 100 μ M; ascorbate, 5 mM; Cu²⁺, 200 μ M).

Fig. S9. Effect of extension reaction time on fluorescence intensity. The results were the average of three repetitive experiments with error bars indicating the standard deviation. (Probe 1, 500 nM; KF polymerase, 10 U/mL; dNTPs, 100 μ M; ascorbate, 5 mM; Cu²⁺, 200 μ M).

