Electronic supplementary information (ESI) for Dynamics of proton transfer in imidazole hydrogen-bond chains

Worapong Bua-ngern, Sermsiri Chaiwongwattana, Parichart Suwannakham, and Kritsana Sagarik*

School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand

- Figure S1Correlations of the static results of $H^+(Im)_2$ obtained from the RIMP2/TZVP and
B3LYP/TZVP calculations in the gas phase ($\epsilon = 1$) and continuum solvent ($\epsilon = 23$).
a) Interaction (ΔE) and solvation (ΔE^{sol}) energies.
 - b) R_{N-N} distance.
 - c) Asymmetric stretching coordinate (Δd_{DA}).
 - d) Asymmetric N-H stretching frequency (v^{NH}).
 - e) Isotropic shielding constant (σ_{H^+}).
- **Figure S2** Potential energy curves obtained from B3LYP/TZVP calculations in the gas phase.
 - a) Proton displacement in H-bond (1) of $H^+(Im)_2$.
 - b) Rotation (ω_1) of H-bond (1) in H⁺(Im)₂.
 - c) Axial rotation (θ) of V₂ reference vector in H⁺(Im)₃.
 - d) Proton displacement in H-bond (2) of H⁺(Im)₄.
 - e) Rotation (ω_2) of H-bond (2) in H⁺(Im)₄.

 $E^{rel} = relative energy.$

- Figure S3 a) c) Proton transfer profiles and time evolutions of dihedral angle (ω_2) of Hbond (2) in structure G4-[1]^(ω_1 =-92) obtained from BOMD simulations at 350 K. L and S = large- and small-amplitude N-N vibrations, respectively.
- Figure S4 a) Vibrational spectra of H-bond (2) in structure G4-[1] $(\omega_1^{=-92})$ obtained from BOMD simulations at 350 K.

b) Vibrational spectra for torsional oscillation (ω_2) of H-bond (2) in structure G4-[1]($\omega_1^{=-92}$) obtained from BOMD simulations at 350 K.

c) Arrhenius plot for proton transfer in H-bond (2) of structure $G4-[1]^{(\omega_1=-92)}$ obtained from BOMD simulations over the temperature range of 298 to 500 K.

A and **B** = oscillatory shuttling and structural diffusion peaks, respectively; **C** = characteristic peak of the N-H stretching mode in the imidazolium cation (H⁺(Im)); **P** = primary vibrational peak; $\Delta E^{\dagger,Arr}$ = activation energy obtained from the slope of the linear relationship between ln (k) and 1000/T.

- Figure S5 a) c) VACF plots of N-N vibration in structure G4-[1] $(\omega_1^{=-92})$ obtained from BOMD simulations at 350, 400 and 450 K, respectively.
- **Figure S6** Proton transfer profiles and time evolutions of dihedral angles (ω_1 , ω_2 and ω_3) of H-bonds in structure **G4-[1]**^(ω_1 =-92) obtained from BOMD simulations at 350 K.
- **Figure S7** Proton transfer profiles and time evolutions of dihedral angles (ω_1 , ω_2 and ω_3) of H-bonds in structure **G4-[1]**^(ω_1 =-92) obtained from BOMD simulations at 298 K.
- Figure S8 a) c) Proton transfer profiles and time evolutions of dihedral angle (ω_2) of Hbond (2) in structure G4-[1]^(ω_1 =-92) obtained from BOMD simulations at 298 K. L and S = large- and small-amplitude N-N vibrations, respectively.
- **Table S1**Static results of $H^+(Im)_n$, n = 2 4, obtained from B3LYP/TZVP calculations.Energies, distances, vibrational frequencies, ¹H NMR isotropic shielding
constants and chemical shifts are in kJ/mol, Å, cm⁻¹, and ppm, respectively.
- **Table S2**Static results of $H^+(Im)_n$, n = 2 4, obtained from RIMP2/TZVP calculations.Energies, distances, vibrational frequencies, ¹H NMR isotropic shielding
constants and chemical shifts are in kJ/mol, Å, cm⁻¹, and ppm, respectively.
- **Table S3**¹H NMR chemical shifts $(\delta_{H^+}{}^{MD})$ and line widths $(\Delta \delta_{H^+}{}^{MD})$ of proton in H-
bond (1) of structure G2-[1]($\omega_1 = -94$) obtained from BOMD simulations
over the temperature range of 298 500 K. $\delta_{H^+}{}^{MD}$, $\Delta \delta_{H^+}{}^{MD}$ and temperature
are in ppm and K, respectively.

Figure S1

Figure S1 (cont.)

Figure S2

Figure S2 (cont.)

Figure S2 (cont.)

Figure S4

Figure S5

Figure S6

Figure S7

Figure S8

Gas	COSMO	H-bond	R _{N-N}	Δd_{DA}	ν^{NH}	σ_{H^+}	$\delta_{\rm H^+}$	ΔΕ	ΔE^{sol}
$G2-[1](\omega_1 = -94)$	C2-[1]($\omega_1 = -94$)	(1)	2.67 (2.74)	0.45 (0.60)	1952 (2414)	10.29	21.68	-116.7 (-32.6)	-84.2
$G2-[2](\omega_1 = 180)$	C2-[2] ^($\omega_1 = -175$)	(1)	2.69 (2.76)	0.49 (0.63)	2020 (2464)	10.75	21.22	-111.1 (-29.8)	-81.3
$G3-[1]^{(\omega_1 = -93)}$	C3-[1] ^(ω_1 = -61)	(1) (2)	2.75 (2.78) 2.75 (2.77)	0.61 (0.66) 0.61 (0.65)	2421 (2529) 2421 (2529)	12.97 12.98	19.00 - 18.99	-211.4 (-41.5) -	-169.9 - - -
$G4-[1]^{(\omega_1 = 93)}$	$C4-[1]^{(\omega_1 = 92)}$	(1) (2) (3)	2.68 (2.75) 2.77 (2.78) 2.86 (2.87)	0.48 (0.61) 0.65 (0.66) 0.77 (0.79)	2039 (2445) 2587 (2583) 2892 (2895)	10.64 13.68 15.79	21.33 18.29 16.18	-279.3 (-83.4) - -	-195.9 - - - -

Table S1Static results of $H^+(Im)_n$, n = 2 - 4, obtained from B3LYP/TZVP calculations. Energies, distances,
vibrational frequencies, ¹H NMR isotropic shielding constants and chemical shifts are in kJ/mol, Å, cm⁻¹,
and ppm, respectively.

 R_{N-N} = H-bond distance; Δd_{DA} = asymmetric stretching coordinate; ΔE = interaction energy; ΔE^{sol} = solvation energy; ν^{NH} = asymmetric N-H stretching frequency; σ_{H+} = ¹H NMR isotropic shielding constants; δ_{H+} = ¹H NMR chemical shift; (...) = continuum liquid (COSMO, ε = 23).

Table S2	Static results of $H^+(Im)_n$, $n = 2 - 4$, obtained from RIMP2/TZVP calculations. Energies, distances,
	vibrational frequencies, ¹ H NMR isotropic shielding constants and chemical shifts are in kJ/mol, Å, cm ⁻¹ ,
	and ppm, respectively.

Gas	COSMO	H-bond	R _{N-N}	$\Delta d_{\rm DA}$	$\nu^{\rm NH}$	σ_{H+}^{corr}	δ^{corr}_{H+}	ΔΕ	ΔE^{sol}
G2-[1]($\omega_1 = -98$) \oplus ⁽¹⁾	C2-[1]($\omega_1 = -83$) \oplus (1)	(1)	2.64 (2.71)	0.42 (0.56)	1859 (2336)	8.86 -	23.10	-124.8 (-39.1)	-85.6 -
G2-[2] ^($\omega_1 = 180$)	C2-[2] ^($\omega_1 = 180$)	(1)	2.66 (2.72)	0.44 (0.58)	1921 (2380)	9.27	22.69	-119.6 (-36.5)	-83.1
$G3-[1](\omega_1 = -99)$	$C3-[1](\omega_1 = -84)$	(1) (2)	2.71 (2.74) 2.71 (2.73)	0.57 (0.61) 0.57 (0.60)	2359 (2456) 2359 (2456)	11.89 - 11.90	20.07	-227.3 (-75.2)	-152.0
$G4-[3](\omega_1 = 167)$	$C4-[3]^{(\omega_1 = 146)}$	(1) (2) (3)	2.65 (2.71) 2.74 (2.74) 2.81 (2.82)	$\begin{array}{c} 0.43 \\ (0.57) \\ 0.61 \\ (0.61) \\ 0.71 \\ (0.73) \end{array}$	1946 (2385) 2532 (2524) 2823 (2823)	9.25 12.69 14.85	22.72 19.27 17.12	-303.8 (-104.3) - -	-199.4 - - - -

 R_{N-N} = H-bond distance; Δd_{DA} = asymmetric stretching coordinate; ΔE = interaction energy; ΔE^{sol} = solvation energy; v^{NH} = asymmetric N-H stretching frequency; σ_{H+}^{corr} = isotropic shielding constants; δ_{H+}^{corr} = ¹H NMR chemical shift; (...) = continuum liquid (COSMO, ε = 23).

Table S3 ¹H NMR chemical shifts ($\delta_{H^+}{}^{MD}$) and line widths ($\Delta \delta_{H^+}{}^{MD}$) of proton in H-bond (1) of structure **G2-[1]** ($\omega_1 = -94$) obtained from BOMD simulations over the temperature range of 298 – 500 K. $\delta_{H^+}{}^{MD}$, $\Delta \delta_{H^+}{}^{MD}$ and temperature are in ppm and K, respectively.

Т	Peak	$\delta_{H^+}{}^{MD}$	$\Delta \delta_{H^+}{}^{MD}$
298	Α	24.39	1.45
	В	20.96	3.76
	С	17.63	2.47
350	Α	24.68	0.90
	В	22.25	2.83
	С	19.54	3.00
380	Α	24.50	0.77
	В	21.16	3.47
	С	17.77	3.28
400	Α	24.03	2.18
	В	20.66	2.98
	С	17.69	3.57
450	Α	24.39	1.19
	В	22.45	1.95
	С	19.96	2.87
500	Α	24.64	1.04
	В	21.57	3.30
	С	18.41	2.66

A = oscillatory shuttling peak; B = structural diffusion peak;

C = characteristic peak of proton in imidazolium cation (H⁺(Im)).