Supporting Information (SI)

Indole-BODIPY: A *"turn-on"* chemosensor for Hg²⁺ with application in Live Cell imaging

Navdeep Kaur,^a Paramjit Kaur,^{*a} Gaurav Bhatia^b, Kamaljit Singh^{*a} and Jatinder Singh^b

^aDepartment of Chemistry, UGC-Centre of Advanced Studies-II, ^bDepartment of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar-143 005, Punjab, India.

E-mail: paramjit19in@yahoo.co.in; kamaljit19in@yahoo.co.in

1.	¹ H NMR spectrum of 1 in CDCl ₃ .	S1
2.	¹³ C NMR spectrum of 1 in CDCl _{3.}	S2
3.	IR spectrum of 1.	S3
4.	Mass spectrum of 1.	S3
5.	HSQC spectrum of 1 in CDCl _{3.}	S4-S5
6.	The emission spectral pattern of 1 upon pH titrations with HCl and NaOH in CH ₃ CN.	S5
7.	Changes in the emission properties of 1 at 610 nm upon addition of various metal ions	5. S6
8.	Responsiveness of 1 in the presence of 6.6 equiv. of Hg ²⁺ .	S6
9.	Increase in the emission intensity at 612 nm of 1 upon addition of increasing amount of	of
	$\mathrm{Hg^{2+}}$ Inset: Graph depicting 3.3 x 10 ⁻⁷ M concentration (detection limit) of $\mathrm{Hg^{2+}}$ to	
	be the lowest to be detected by 1 .	S7
10.	. Representative detection limits for Hg ²⁺ reported by various research groups.	S7
11.	. Emission behavior of 1 in the presence of Hg^{2+} and other cations.	S8
12.	. Optimized structure of the putative Hg^{2+} complex of 1 .	S8
13.	. Changes in the emission spectrum of 1 , upon sequential addition of Hg^{2+} and cysteine	
	to the solution of 1 .	S9
14.	. Cartesian coordinates of the optimized structure of 1 .	S9
15.	. Cartesian coordinates of the optimized structure of 1 +Hg ²⁺ .	S12
16.	. Complete reference 20.	S15

Fig. S1. ¹H NMR spectrum of 1 in CDCl₃.

Fig. S2. ¹³C NMR spectrum of 1 in CDCl₃.

•

Fig. S3. IR spectrum of 1.

Fig. S4. Mass spectrum of 1.

Fig. S5. HSQC spectrum of 1 in CDCl₃.

Fig. S5a. Expanded HSQC spectrum of 1(0-5.8ppm).

Fig. S5b. Expanded HSQC spectrum of 1(6 -7.8ppm).

Fig. S6. The emission spectral pattern of **1** (5 x 10^{-6} M, in CH₃CN) upon pH titrations with HCl (0.01 M) and NaOH (0.01 M) in CH₃CN at 610 nm.

Fig. S7. Changes in the emission behavior of **1** (5.0×10^{-6} M, in CH₃CN) at 610 nm upon addition of various metal ions (3.33×10^{-5} M, in water).

Fig. S8. Responsiveness of 1 in the presence of 6.6 equiv. of Hg^{2+} .

Fig. S9. Increase in the emission intensity at 612 nm of **1** (5 x 10^{-6} M, in CH₃CN) upon addition of increasing amount of Hg²⁺ ($1.7x \ 10^{-7}$ M to $3.3 \ x \ 10^{-5}$ M, in H₂O) in CH₃CN. Inset: Graph depicting $3.3 \ x \ 10^{-7}$ M concentration (detection limit) of Hg²⁺ to be the lowest to be detected by **1**.

Table S1.	Representative	detection 1	limits for	Hg ²⁺ re	ported by	y various	research gr	oups.
	1			0	-		0	

References	Detection limit
New J. Chem., 2011 , 35, 1194–1197	0.5 x 10 ⁻⁶ M
Org. Biomol. Chem., 2012 , 10, 5410	0.226 x 10 ⁻⁶ M ,
J. Mater. Chem., 2012 , 22, 11475	0.015 x 10 ⁻⁶ M
Inorg. Chem. 2013 , 52, 11136-11145	0.77 x 10 ⁻⁶ M
Analyst, 2013 , 138, 3809	0.2 x10 ⁻⁷ M
New J. Chem., 2014 , 38, 3770	0.168 x 10 ⁻⁶ M ,
Chem. Commun., 2014 , 50, 1119	0.65 x 10 ⁻⁷ M,
RSC Adv., 2015 , 5, 30522	1.60 x 10 ⁻⁷ M.
Dalton Trans., 2016 , 45, 2700	0.051 x 10 ⁻⁷ M and
	0.072 x 10 ⁻⁷ M
Present work	3.3 x 10 ⁻⁷ M

Fig. S10. Emission behavior of **1** (5.0×10^{-6} M, in CH₃CN) in the presence of Hg²⁺ (3.33×10^{-5} M, in water) (red), and Hg²⁺ (3.33×10^{-5} M, in water) in the presence of other cations (3.33×10^{-5} M, in water).

Fig. S11. Optimized structure of the putative Hg²⁺ complex of 1.

Fig. S12. Changes in the emission spectrum of **1**, upon sequential addition of $Hg^{2+}(3.33 \times 10^{-5} \text{ M}, \text{ in water})$ and cysteine (8.33 x 10⁻⁵ M, in water) into solution of **1** (5 x 10⁻⁶ M, in CH₃CN).

Table S2. Cartesian coordinates of the optimized structure of 1.

SCF Done: E(UB3LYP) = -1793.87490205 a.u.

Center Number	Atomic Number	Coordin X	ates (Angstr Y Z	coms)
1	6	-5.293001	2.389865	1.524048
2	6	-5.668732	1.689710	0.365056
3	6	-4.134244	1.969311	2.199235
4	6	-4.915421	0.613396	-0.106543
5	1	-6.559936	1.994670	-0.176528
6	6	-3.371760	0.898492	1.730253
7	1	-3.830838	2.481904	3.108010

8	6	-3.747772 0.197480 0.565981
9	1	-5.217484 0.098043 -1.011654
10	1	-2.494940 0.579156 2.282859
11	6	-2.950746 -0.945411 0.063082
12	6	-4.931345 -2.602425 -0.064150
13	6	-5.009833 -3.939946 -0.486110
14	1	-5.726672 -2.007664 0.356064
15	6	-3.728865 -4.315672 -0.915659
16	1	-5.883600 -4.573094 -0.472125
17	1	-3.376836 -5.260201 -1.298565
18	6	-3.592427 -2.171849 -0.252913
19	7	-2.875000 -3.259565 -0.776049
20	6	-0.644011 0.226442 0.151921
21	6	0.494570 -1.589911 -0.611786
22	6	0.667103 -0.239031 -0.159925
23	1	-0.898329 1.205377 0.520375
24	1	1.240034 -2.276043 -0.980981
25	6	-1.553551 -0.825954 -0.090630
26	7	-0.796552 -1.927186 -0.581526
27	5	-1.389731 -3.252017 -1.155058
28	9	-1.210019 -3.263589 -2.575282
29	9	-0.703912 -4.368254 -0.588295
30	6	1.919128 0.446373 -0.090602
31	6	0.091549 2.754115 -1.757016
32	6	1.144495 2.861066 -0.829543
33	6	-0.456695 3.916491 -2.298780
34	6	1.633638 4.160211 -0.506006

35	6	1.981082 1.897386 -0.112919
36	6	0.029595 5.192446 -1.942462
37	1	-1.272932 3.839020 -3.009487
38	6	1.087064 5.331204 -1.043945
39	6	2.918189 2.659297 0.586410
40	1	-0.420879 6.077931 -2.379107
41	1	1.472665 6.310880 -0.781662
42	1	3.692237 2.321546 1.257127
43	6	2.710910 -2.384773 1.583147
44	6	3.454298 -1.535936 0.741874
45	6	3.334939 -3.492359 2.155103
46	6	4.834469 -1.826005 0.535715
47	6	3.166280 -0.292070 0.024388
48	6	4.697083 -3.772187 1.912838
49	1	2.761559 -4.155282 2.794241
50	6	5.467384 -2.938560 1.103563
51	6	4.373710 0.095110 -0.558366
52	1	5.151672 -4.647367 2.365439
53	1	6.517398 -3.146171 0.926310
54	1	4.571232 0.942860 -1.195135
55	7	5.369277 -0.817444 -0.268820
56	7	2.711689 4.007338 0.369230
57	6	3.476183 5.098077 0.958809
58	1	3.954536 5.704544 0.181478
59	1	2.830147 5.746152 1.561181
60	1	4.252251 4.682580 1.604172
61	6	6.744030 -0.766428 -0.748211

62	1	7.448301	-0.747814	0.090929
63	1	6.971168	-1.633811	-1.377900
64	1	6.882384	0.140051	-1.340255
65	6	-6.095849	3.572952	2.016359
66	1	-5.709039	4.515311	1.604218
67	1	-7.146946	3.495496	1.718867
68	1	-6.057915	3.656933	3.107899
69	1	-0.293759	1.783612	-2.043391
70	1	1.663982	-2.189415	1.781957

Table S3. Cartesian coordinates of the optimized structure of $1+Hg^{2+}$.

SCF Done: E(UB3LYP) = -2100.80572668 a.u.

Center Number	Atomic Number	Coordinates (Angstroms) X Y Z
1	6	-5.134416 -2.111179 2.420757
2	6	-4.961079 -2.780384 1.198033
3	6	-3.993072 -1.603444 3.060026
4	6	-3.692866 -2.951564 0.638905
5	1	-5.827098 -3.183881 0.679926
6	6	-2.725453 -1.748771 2.501682
7	1	-4.096833 -1.089222 4.011846
8	6	-2.553805 -2.429797 1.282616
9	1	-3.588868 -3.464577 -0.311976
10	1	-1.859507 -1.359550 3.027787
11	6	-1.210278 -2.577786 0.686406
12	6	-1.325470 -5.120217 0.338030

13	6	-0.432360 -6.010042 -0.229798
14	1	-2.292418 -5.345735 0.763471
15	6	0.700672 -5.257804 -0.618783
16	1	-0.552216 -7.076857 -0.354016
17	1	1.617285 -5.604635 -1.077606
18	6	-0.734568 -3.821577 0.271301
19	7	0.528590 -3.962825 -0.324559
20	6	-0.678181 -0.067507 0.693771
21	6	1.392191 -0.298180 -0.189353
22	6	0.460118 0.666784 0.277189
23	1	-1.588618 0.338515 1.107221
24	1	2.367514 -0.143784 -0.629759
25	6	-0.398155 -1.421160 0.496632
26	7	0.884501 -1.523543 -0.061073
27	5	1.618366 -2.856322 -0.417002
28	9	2.156406 -2.785045 -1.694270
29	9	2.624137 -3.096123 0.521313
30	6	0.633856 2.097322 0.286136
31	6	-2.185464 1.869318 -1.531906
32	6	-1.767710 2.759690 -0.549990
33	6	-3.482000 2.034096 -2.107040
34	6	-2.612307 3.862224 -0.220242
35	6	-0.534395 2.942929 0.200257
36	6	-4.314886 3.140370 -1.721220
37	1	-3.683931 1.547789 -3.061927
38	6	-3.887283 4.055523 -0.781998
39	6	-0.707925 4.124231 0.914661

40	1	-5.274404 3.266999 -2.210461
41	1	-4.500338 4.907906 -0.511622
42	1	-0.043706 4.582472 1.633513
43	6	3.536321 1.094389 1.741807
44	6	3.160290 2.214859 0.987122
45	6	4.844978 1.010622 2.218608
46	6	4.115971 3.236174 0.776851
47	6	1.907991 2.696288 0.399184
48	6	5.784081 2.026272 1.962989
49	1	5.139786 0.147639 2.807817
50	6	5.428789 3.164317 1.240732
51	6	2.207681 3.981216 -0.122080
52	1	6.794936 1.932009 2.347169
53	1	6.140755 3.963286 1.063497
54	1	1.566189 4.639290 -0.690165
55	7	3.492730 4.284112 0.078626
56	7	-1.940923 4.658564 0.678021
57	6	-2.467051 5.882146 1.284238
58	1	-2.655005 6.630005 0.509784
59	1	-3.394306 5.663542 1.818901
60	1	-1.728368 6.268333 1.985709
61	6	4.172086 5.493220 -0.379967
62	1	4.595956 6.022997 0.476751
63	1	4.971855 5.226340 -1.075463
64	1	3.449662 6.135835 -0.882616
65	6	-6.500880 -1.973993 3.045879
66	1	-7.290663 -1.981409 2.288358

67	1	-6.697628	-2.808160	3.732214
68	1	-6.584060	-1.049727	3.626291
69	1	-1.540790	1.075339	-1.891749
70	1	2.828165	0.305142	1.966787
71	80	5.268909	-1.286727	-0.626377
72	80	-4.524120	0.091734	-1.047795

Complete reference 20

Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.,Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.s Gaussian, Inc., Wallingford CT, 2010.