RSC Advances

Electronic Supplementary Information

Computationally Designed Tandem Direct Selective Oxidation using Molecular Oxygen as Oxidant without Coreductant

Bo Yang and Thomas A. Manz*

Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM 88003-8001.

*corresponding author email tmanz@nmsu.edu

CONTENTS:

1. Additional Figures and Tables

1.1 Crossing Point Calculations

- 1.2 Relative Energies with Respect to Different Oxygen Chemical Potentials
- 1.3 Computed Activation Barriers and Net Reaction Energies
- 1.4 Computed ASMs
- 1.5 Computed Reaction Cycles and Energy Profiles
- 2. DFT-Optimized Geometries
 - 2.1 DMZB Catalytic System (B3LYP/LANL2DZ)
 - 2.2 <u>DIZB Catalytic System (B3LYP/LANL2DZ)</u>
 - 2.3 <u>RuTDCPP (Tethered) Catalytic System (B3LYP/LANL2DZ)</u>
 - 2.4 Small Molecules (B3LYP/LANL2DZ)
 - 2.5 <u>Higher Levels of Theory and Basis Set Tests</u>

All data presented in the figures and tables are based on DFT calculations using the B3LYP functional and LANL2DZ basis sets unless specified otherwise. All energies in the table beneath each optimized conformation are in Hartrees. E_{SCF} is the electronic energy without zero point vibrations or thermal contributions. E_{ZP} includes zero-point vibrations but no thermal contributions (i.e., the energy at 0 Kelvin). H and G are the computed enthalpy and Gibbs free energy at 298.15 Kelvin and 1 atmosphere pressure. For transition states, the imaginary frequency f (cm⁻¹) along the reaction coordinate is listed.

Note that $M(O_2)_{2}^{S}$, $M \cdot (O_2)_{2}^{T}$, $M'(O_2)_{2}^{S}$, and $M' \cdot (O_2)_{2}^{T}$ without any conformation label are the spiro conformations.

1. Additional Figures and Tables

1.1 Crossing Point Calculations

Fig. S1: Triplet-quintet crossing point for reaction in which molecular O₂ reacts with the triplet oxo complex to form the triplet η^2 -ozone complex. The activation barrier for this reaction was estimated according to the triplet-quintet energy crossing point (CP₁) as marked in plot (a). Legend T.G. = triplet geometry, T.E. = triplet energy, Q.G. = quintet geometry, Q.E. = quintet energy. Each red dot in the two-dimensional chemical drawing represents one-half of an electron. (The two unpaired electrons in the triplet geometry are nominally shared between the four N atoms.) The constrained distances between two red (blue) marked atoms are defined as x_{red} (x_{blue}), with $x_{red}^0 = 1.514$ Å ($x_{blue}^0 = 2.092$ Å) as in the triplet η^2 -ozone ground state. The ratio of elongation (γ) between two constrained distances is defined as: $\gamma = \Delta x_{blue} / \Delta x_{red}$ with $\Delta x_{blue} = x_{blue} - x_{blue}^0$, and $\Delta x_{red} = x_{red} - x_{red}^0$. For plot (a) $\gamma = 0.5$, (b) $\gamma = 1.0$, (c) $\gamma = 2.0$, and (d) $\gamma = 4.0$.

For reaction in which molecular O_2 reacts with the MO^T complex, a triplet-quintet crossing point calculation was constructed to determine the associated activation barrier. In this case, the activation barrier was defined by the triplet-quintet crossing point (CP₁) where a vertical transition (i.e., at constant geometry) occurred. As shown in Fig. S1, this crossing point was estimated by a series of constrained geometry optimizations over the potential energy surface. Starting with the fully optimized $M(\eta^2-O_3)^T$ structure, two distances were constrained simultaneously:

RSC Advances

1) marked in red in Fig. S1: the distance between the outer O atom (the one that remains adsorbed to form the oxo group) and the middle O atom

2) marked in blue in Fig. S1: the distance between the Zr atom and the other outer O atom (the one that desorbs to form an O_2 molecule)

All other geometric parameters were relaxed for both triplet and quintet constrained geometry optimizations. Computed SCF energy (E_{SCF}) for each constrained geometry was plotted against independently constrained values of the two variables to create a two-dimensional potential energy surface. The triplet energies for constrained optimized triplet and quintet geometries, and quintet energies for constrained optimized triplet and quintet geometries. As shown in Fig. S1, the crossing point (CP₁) was estimated as the lowest energy for which triplet and quintet energies were the same for the same geometry along this potential energy surface.

Fig. S2: Singlet-triplet crossing point for reaction in which Me₂PyO denotes an O atom to the bare RuTDCPP complex to form Me₂Py plus the RuTDCPP oxo complex. The activation barrier for this reaction was estimated according to the singlet-triplet energy crossing point (CP₂) as marked in the diagram. Legend: S.G. = singlet geometry, S.E. = singlet energy, T.G. = triplet geometry, T.E. = triplet energy. The distance between the two red marked atoms is constrained in each geometry optimization.

For reaction in which Me₂PyO denotes an O atom to the bare RuTDCPP complex to form Me₂Py plus the RuTDCPP oxo complex, a singlet-triplet crossing point calculation was constructed to determine the associated activation barrier. The activation barrier was defined by the singlet-triplet crossing point (CP₂) where a vertical transition occurred. As shown in Fig. S2, this crossing point was estimated by a series of constrained geometry optimizations over the potential energy surface. Starting with the fully optimized RuTDCPP(Me₂PyO)^T structure, the distance between the O atom and the N atom (marked in red in Fig. S2) was constrained. All other geometric parameters were relaxed for both singlet and triplet constrained geometry optimizations. Computed SCF energy (E_{SCF}) for the constrained geometry was plotted against the constrained distance. The singlet energies for constrained optimized singlet and triplet geometries, and triplet energies for constrained optimized singlet and triplet geometries. Startine optimized singlet and triplet geometries, and triplet energies for constrained optimized singlet and triplet geometries. S1, the crossing point was estimated as the lowest energy for which singlet and triplet energies were the same for the same geometry along this potential energy surface.

Fig. S3: Singlet-triplet crossing point for the reaction forming RuTDCPP(PO)^S from RuTDCPP(PO^{*})^T. The activation barrier for this reaction was estimated according to the singlet-triplet energy crossing point (CP₃) as marked in the diagram. Legend: S.G. = singlet geometry, S.E. = singlet energy, T.G. = triplet geometry, T.E. = triplet energy. The distance between the two red marked atoms is constrained in each geometry optimization.

For the reaction forming RuTDCPP(PO)^S from RuTDCPP(PO*)^T, a singlet-triplet crossing point calculation was constructed to determine the associated activation barrier. The activation barrier was defined by the singlet-triplet crossing point (CP₃) where a vertical transition occurred. As shown in Fig. S3, this crossing point was estimated by a series of constrained geometry optimizations over the potential energy surface. Starting with the fully optimized RuTDCPP(PO*)^T structure, the distance between the O atom and the middle C atom (marked in red in Fig. S3) was constrained. All other geometric parameters were relaxed for both singlet and triplet constrained geometry optimizations. Computed SCF energy (E_{SCF}) for the constrained geometry was plotted against the constrained distance. The singlet energies for constrained optimized singlet and triplet geometries, and triplet energies for constrained optimized singlet and triplet geometries were computed. As shown in Fig. S3, the crossing point was estimated as the lowest energy for which singlet and triplet energies were the same for the same geometry along this potential energy surface.

1.2. Relative Energies with Respect to Different Oxygen Chemical Potentials

Table S1: Summary of the computed relative energies for the DMZB catalyst with various oxygenated functional groups. The triplet spiro bisperoxo form of the DMZB catalyst $(M \cdot (O_2)_2^T)$ is the reference state. The columns labeled Me₂PyO refer to the 2,6-dimethylpyridine *N*-oxide side and the columns labeled O₂ refer to the O₂ side.

	Relative Energy (kcal/mol)								
DMZB	Escf		Ezp		Н		G		
	Me ₂ PyO	O_2	Me ₂ PyO	O_2	Me ₂ PyO	O_2	Me ₂ PyO	O ₂	
M ^S	-11.3	18.3	-4.8	17.0	-8.4	16.7	6.2	0.3	
\mathbf{M}^{T}	42.7	72.4	46.9	68.6	44.3	69.4	52.8	46.9	
MO ^S	-5.0	17.3	-1.2	15.2	-3.5	15.3	5.0	0.6	
\mathbf{MO}^{T}	-16.9	5.3	-13.4	3.0	-15.6	3.3	-8.2	-12.6	
$M(O)_2^S$	16.2	31.1	19.8	30.7	18.5	31.1	23.2	20.2	
$M(O)_2^T$	18.9	33.8	21.1	31.9	20.2	32.7	23.0	20.1	
$M(O_2)^S$	2.3	17.2	5.2	16.1	3.8	16.4	9.5	6.6	
$M(O_2)^T$	-7.9	6.9	-5.4	5.5	-7.2	5.3	-1.0	-3.9	
$MO(O_2)^S$	16.1	23.5	18.0	23.4	17.4	23.6	20.5	19.1	
$MO \cdot (O_2)^T$	-2.3	5.1	-1.4	4.1	-1.6	4.7	-1.3	-2.7	
$M(\eta^2-O_3)^S$	15.5	23.0	17.5	22.9	16.5	22.8	20.4	18.9	
$M(\eta^2-O_3)^T$	5.9	13.4	7.7	13.1	6.8	13.1	9.7	8.2	
$M(\eta^3-O_3)^S$	19.9	27.3	21.5	27.0	20.7	27.0	24.1	22.6	
$M(\eta^3-O_3)^T$	9.7	17.1	10.8	16.3	10.2	16.5	12.0	10.5	
$M(O_2)_2^S$	25.3	25.3	26.0	26.0	25.6	25.6	27.2	27.2	
$M \cdot (O_2)_2^T$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
$MO(\eta^2-O_3)^S$	23.2	23.2	24.0	24.0	24.0	24.0	24.3	24.3	
$MO \cdot (\eta^2 - O_3)^T$	12.6	12.6	13.1	13.1	13.3	13.3	12.9	12.9	
$MO \cdot (\eta^3 - O_3)^T$	33.4	33.4	33.2	33.2	33.2	33.2	33.3	33.3	
$M(O_2)(\eta^2-O_3)^S$	28.5	21.1	28.6	23.2	28.8	22.5	28.6	30.1	
$M(\eta^2 - O_3) \cdot (O_2)^T$	20.6	13.2	19.5	14.1	20.1	13.9	18.0	19.5	
$M(O_2)(\eta^3-O_3)^S$	33.9	26.5	34.3	28.9	34.3	28.0	35.1	36.6	
$M(\eta^3 - O_3) \cdot (O_2)^T$	23.5	16.1	22.6	17.1	23.0	16.7	21.7	23.2	
$M(\eta^2 - O_3)_2^S$	44.1	29.3	43.3	32.5	44.0	31.5	41.5	44.5	
$\mathbf{M} \cdot (\eta^2 \cdot \mathbf{O}_3)_2^{\mathrm{T}}$	42.1	27.2	40.1	29.2	41.0	28.4	37.6	40.5	
$M(\eta^2-O_3)(\eta^3-O_3)^{S}$	47.3	32.5	46.5	35.6	47.1	34.5	45.9	48.8	
$M(\eta^{3}-O_{3})\cdot(\eta^{2}-O_{3})^{T}$	42.7	27.9	41.2	30.3	42.0	29.5	39.4	42.3	
$M(O_2)_{2,butterfly}^S$	30.7	30.7	30.9	30.9	31.0	31.0	30.9	30.9	
$M(O_2) \cdot (O_2)_{butterfly}^T$	11.0	11.0	10.6	10.6	10.7	10.7	10.0	10.0	
$M(O_2)_{2 \text{ planar}}^S$	19.5	19.5	20.3	20.3	20.0	20.0	21.8	21.8	

	Relative Energy (kcal/mol)										
DMZB	Escf		Ezp		Н		G				
	Me ₂ PyO	O ₂	Me ₂ PyO	O ₂	Me ₂ PyO	O ₂	Me ₂ PyO	O ₂			
MO·Me ₂ Py ^S	-7.1	15.1	-1.5	14.9	-3.3	15.5	18.6	14.2			
$M(O_2) \cdot Me_2 Py^S$	8.0	22.9	13.0	23.9	11.3	23.9	33.4	30.5			
$M(O_2) \cdot Me_2 Py^T$	-3.9	10.9	0.7	11.6	-0.7	11.8	19.9	16.9			
$M(\eta^2-O_3)\cdot Me_2Py^S$	22.7	30.1	26.2	31.7	24.8	31.1	45.2	43.8			
$M(\eta^2 - O_3) \cdot Me_2 Py^T$	11.2	18.6	14.6	20.0	13.7	20.0	31.9	30.4			
$M(\eta^3-O_3)\cdot Me_2Py^S$	31.5	39.0	34.7	40.2	33.8	40.1	53.1	51.6			
$M(\eta^3-O_3)\cdot Me_2Py^T$	14.4	21.8	17.5	23.0	16.7	23.0	34.9	33.4			
MO·Me ₂ PyO ^S	-13.4	8.8	-8.2	8.1	-9.9	9.0	10.8	6.4			
$MO \cdot Me_2PyO^T$	-25.3	-3.1	-20.4	-4.1	-22.0	-3.1	-2.0	-6.4			
$M(O_2) \cdot Me_2 PyO^S$	-3.8	11.0	0.5	11.4	-0.9	11.7	19.0	16.0			
$M(O_2) \cdot Me_2 PyO^T$	-14.4	0.5	-10.4	0.5	-11.6	0.9	7.4	4.4			
$M(\eta^2-O_3)\cdot Me_2PyO^S$	11.7	19.1	15.8	21.3	14.6	20.9	34.6	33.1			
$M(\eta^2 - O_3) \cdot Me_2 PyO^T$	3.3	10.7	6.5	12.0	5.7	11.9	23.2	21.7			
$M(\eta^3-O_3)\cdot Me_2PyO^S$	19.1	26.5	22.2	27.6	20.8	27.1	40.9	39.4			
$M(\eta^3-O_3)\cdot Me_2PyO^T$	5.8	13.3	8.7	14.2	7.8	14.1	25.9	24.4			
MO·EO ^S	-5.0	17.2	1.5	17.8	-0.7	18.1	20.2	15.8			
$MO \cdot EO^T$	-28.3	-6.1	-22.9	-6.6	-24.7	-5.9	-5.9	-10.3			
$M(O_2) \cdot EO^S$	-2.7	12.1	2.1	13.0	0.5	13.0	19.3	16.4			
$M(O_2) \cdot EO^T$	-13.6	1.3	-9.1	1.8	-10.6	1.9	7.1	4.1			
$M(\eta^2-O_3)\cdot EO^S$	11.0	18.4	15.1	20.5	13.8	20.1	31.4	29.9			
$M(\eta^2-O_3)\cdot EO^T$	2.3	9.7	5.4	10.9	4.0	10.3	20.8	19.3			
$M(\eta^3-O_3)\cdot EO^S$	17.6	25.0	21.3	26.7	20.0	26.3	37.8	36.3			
$M(\eta^3-O_3)\cdot EO^T$	5.9	13.3	9.0	14.4	8.1	14.3	22.6	21.1			

	Relative Energy (kcal/mol)								
RuTDCPP	Escf		Ezp		Н		G		
	Me ₂ PyO	PO	Me ₂ PyO	PO	Me ₂ PyO	PO	Me ₂ PyO	PO	
RuTDCPP ^S	17.0	8.5	18.5	10.3	17.8	9.6	20.6	10.8	
RuTDCPP ^T	43.9	35.4	43.8	35.6	43.7	35.5	44.4	34.7	
RuTDCPP ^Q	71.0	62.5	69.2	60.9	69.3	61.1	68.6	58.8	
RuTDCPP(O) ^S	22.5	22.5	22.5	22.5	22.5	22.5	23.3	23.3	
$RuTDCPP(O)^T$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
RuTDCPP(O) ^Q	39.4	39.4	36.3	36.3	36.8	36.8	35.3	35.3	
RuTDCPP(Me ₂ Py) ^S	15.5	7.0	18.7	10.5	17.9	9.7	36.2	26.5	
RuTDCPP(Me ₂ Py) ^T	41.9	33.4	43.9	35.7	43.2	35.0	61.6	51.8	
RuTDCPP(Me ₂ Py) ^Q	77.0	68.5	77.7	69.5	77.2	69.0	94.6	84.9	
RuTDCPP(Me ₂ PyO) ^S	1.3	-7.2	3.5	-4.7	3.3	-4.9	19.5	9.8	
RuTDCPP(Me ₂ PyO) ^T	24.0	15.5	25.4	17.2	25.2	17.0	41.3	31.6	
RuTDCPP(Me ₂ PyO) ^Q	51.5	43.0	50.5	42.2	51.2	43.0	62.6	52.9	
RuTDCPP(P) ^S	5.2	-3.4	8.3	0.1	7.4	-0.8	23.8	14.0	
RuTDCPP(P) ^T	34.7	26.2	36.6	28.4	35.9	27.7	51.2	41.4	
RuTDCPP(P) ^Q	70.8	62.3	71.2	63.0	70.7	62.5	85.2	75.4	
RuTDCPP(PO) ^S	-3.4	-12.0	-0.7	-9.0	-1.2	-9.4	14.2	4.5	
RuTDCPP(PO) ^T	34.2	25.7	35.2	26.9	35.1	26.9	48.3	38.6	
RuTDCPP(PO) ^Q	61.8	53.2	61.4	53.1	61.4	53.2	74.6	64.8	
RuTDCPP(Py) ^T	13.4	4.9	14.8	6.6	14.5	6.3	29.4	19.7	
RuTDCPP(Py) ^S	-14.5	-23.1	-11.5	-19.8	-12.1	-20.3	4.1	-5.7	
RuTDCPP(PyO) ^T	30.5	22.0	31.2	22.9	31.2	23.0	45.6	35.8	
RuTDCPP(PyO) ^S	-4.6	-13.2	-2.4	-10.7	-2.6	-10.8	11.5	1.7	

Table S3: Summary of the computed relative energies for the RuTDCPP catalyst with various oxygenated functional groups or adsorbed molecules. The triplet oxo form of the RuTDCPP catalyst (RuTDCPP(O)^T) is the reference state. The columns labeled Me₂PyO refer to the 2,6-dimethylpyridine *N*-oxide side and the columns labeled PO refer to the PO side.

1.3. Computed Activation Barriers and Net Reaction Energies

Table S4: The computed activation barriers and net reaction energies for various reaction steps in the 2,6-dimethylpyridine oxidation reaction using the DMZB catalyst. The computed overall energetic spans are listed at the bottom.

	Activation Barrier						Net Rxn Energy			
Reactant (s)	Product(s)		(kcal	/mol)			(kcal/	'mol)		
		E _{SCF}	EZP	Η	G	E _{SCF}	EZP	Η	G	
$MO \cdot (O_2)^T$	$MO^{T}+O_{2}$	8.0	7.5	7.2	8.0	0.3	-1.1	-1.4	-9.8	
$MO^T + O_2$	$MO \cdot (O_2)^T$	7.7	8.6	8.6	17.9	-0.3	1.1	1.4	9.8	
$MO \cdot Me_2PyO^T$	MO ^T +Me ₂ PyO	8.4^{a}	7.1 ^a	6.4 ^a	a	8.4	7.1	6.4	-6.1	
$MO \cdot (O_2)^T + O_2$	$M(\eta^2 - O_3) \cdot (O_2)^T$	15.8	18.1	16.7	31.1	8.1	10.0	9.1	22.2	
$M(\eta^2 - O_3) \cdot (O_2)^T$	$M(\eta^3\text{-}O_3) \cdot (O_2)^T$	4.4	4.1	3.7	4.6	2.9	3.0	2.9	3.7	
$M(\eta^3-O_3)\cdot(O_2)^T+Me_2Py$	$\mathbf{M} \cdot (\mathbf{O}_2)_2^{\mathrm{T}} + \mathbf{M} \mathbf{e}_2 \mathbf{P} \mathbf{y} \mathbf{O}$	12.8	13.3	13.5	26.6	-23.5	-22.6	-23.0	-21.7	
$\mathbf{M} \cdot (\mathbf{O}_2)_2^{\mathrm{T}} + \mathbf{M} \mathbf{e}_2 \mathbf{P} \mathbf{y}$	$M(O) \cdot (O_2)^T + Me_2PyO$	25.4	26.0	26.1	39.1	-2.3	-1.4	-1.6	-1.3	
$M(O_2)^T + Me_2Py$	MO ^T +Me ₂ PyO	19.8	20.5	21.1	33.7	-9.0	-8.0	-8.3	-7.2	
$MO^{T}+O_{2}$	$M(\eta^2 - O_3)^T$	24.1	24.5	24.0	35.9	8.0	10.1	9.8	20.8	
$M(\eta^2-O_3)^T$	$M(\eta^3-O_3)^T$	3.9	3.2	3.1	3.1	3.7	3.2	3.4	2.3	
$M(\eta^3-O_3)^T+Me_2Py$	$M(O_2)^T + Me_2PyO$	13.8	15.0	14.5	31.1	-17.6	-16.2	-17.5	-13.0	
$MO \cdot (O_2)^T + Me_2Py$	M(O) ₂ ^T +Me ₂ PyO	36.7	37.1	36.9	51.6	21.3	22.4	21.8	24.3	
$\begin{array}{c}M(\eta^3\text{-}O_3)\cdot(\eta^2\text{-}O_3)^T\\+Me_2Py\end{array}$	$\begin{array}{c} M(\eta^2 \text{-} O_3) \cdot (O_2)^T \\ + Me_2 PyO \end{array}$	13.8	14.3	14.4	27.6	-22.2	-21.7	-21.9	-21.4	
Espa	an	32.0 ^b	34.5 ^b	33.3 ^b	54.2 ^c					

^a The transition state and product geometries are the same, because the reaction is completely uphill. ^b The TDI is $MO \cdot Me_2PyO^T$ and the TDTS is TS₃. ^c The TDI is MO^T and the TDTS is TS₈.

reactant	product	a	ctivatio (kcal	n barrio /mol)	er	net rxn energy (kcal/mol)			
		E _{SCF}	EZP	Н	G	E _{SCF}	EZP	Н	G
RuTDCPP(Me ₂ PyO) ^S	RuTDCPP ^S + Me ₂ PyO	15.7 ^a	15.0 ^a	14.5^{a}	1.1 ^a	15.7	15.0	14.5	1.1
RuTDCPP(Me ₂ PyO) ^S	$RuTDCPP(O)^{T}+Me_{2}Py$	28.7	27.0	27.0	26.7	-1.3	-3.5	-3.3	-19.5
$RuTDCPP(O)^{T}+P$	RuTDCPP(PO*) ^T	17.9	17.8	17.7	30.2	9.4	10.0	10.1	22.1
RuTDCPP(PO*) ^T	RuTDCPP(PO) ^S	7.1	7.0	5.9	9.4	-21.4	-19.0	-19.5	-17.6
RuTDCPP(PO) ^S	RuTDCPP ^S +PO	20.4^{a}	19.2ª	19.1ª	6.4 ^a	20.4	19.2	19.1	6.4
E	span	33.4 ^b	31.3 ^b	31.6 ^b	32.0 ^b				

Table S5: The computed activation barriers and net reaction energies for various steps in the propene epoxidation reaction using the RuTDCPP catalyst. The computed overall energetic spans are listed at the bottom.

^a The transition state and product geometries are the same, because the reaction is completely uphill. ^b The TDI is RuTDCPP(PO)^S and the TDTS is CP₂.

Table S6: The computed activation barriers and net reaction energies for various reaction steps in direct ethylene epoxidation using the DMZB catalyst. The computed overall energetic spans are listed at the bottom.

		Activation Barrier				I	Net Rxn Energy			
Reactant(s)	Product (s)		(kcal	/mol)			(kcal	'mol)		
		ESCF	EZP	Η	G	E _{SCF}	EZP	Η	G	
$MO \cdot (O_2)^T$	$MO^{T}+O_{2}$	8.0	7.5	7.2	8.0	0.3	-1.1	-1.4	-9.8	
$MO^{T}+O_{2}$	$MO \cdot (O_2)^T$	7.7	8.6	8.6	17.9	-0.3	1.1	1.4	9.8	
$MO \cdot (O_2)^T + O_2$	$M(\eta^2 - O_3) \cdot (O_2)^T$	15.8	18.1	16.7	31.1	8.1	10.0	9.1	22.2	
$M(\eta^2 - O_3) \cdot (O_2)^T$	$M(\eta^3-O_3)\cdot(O_2)^T$	4.4	4.1	3.7	4.6	2.9	3.0	2.9	3.7	
$MO^{T}+O_{2}$	$M(\eta^2-O_3)^T$	24.1	24.5	24.0	35.9	8.0	10.1	9.8	20.8	
$M(\eta^2-O_3)^T$	$M(\eta^3-O_3)^T$	3.9	3.2	3.1	3.1	3.7	3.2	3.4	2.3	
$M(\eta^3-O_3)\cdot EO^T+E$	$M(O_2) \cdot EO^T + EO$	14.7	15.7	14.6	30.2	-25.8	-23.9	-24.6	-23.3	
$M(O_2) \cdot EO^T + E$	$MO \cdot EO^T + EO$	21.7	22.3	22.0	34.3	-21.1	-19.6	-20.0	-20.7	
$MO \cdot EO^T + O_2$	$M(\eta^2 - O_3) \cdot EO^T$	25.7	27.2	26.1	38.7	15.8	17.5	16.2	29.6	
$M(\eta^2 - O_3) \cdot EO^T$	$M(\eta^3-O_3)\cdot EO^T$	4.9	4.6	4.7	4.1	3.6	3.5	4.1	1.8	
$MO \cdot EO^T$	MO ^T +EO	11.4 ^a	9.6 ^a	9.2 ^a	_a	11.4	9.6	9.2	-2.3	
$M(\eta^{3}-O_{3})\cdot(O_{2})^{T}+E$	$M \cdot (O_2)_2^T + EO$	11.9	12.5	12.4	22.7	-29.9	-28.4	-28.9	-29.5	
$M \cdot (O_2)_2^T + E$	$MO \cdot (O_2)^T + EO$	23.8	24.6	24.4	35.7	-8.7	-7.2	-7.5	-9.0	
$M(\eta^3-O_3)^T+E$	$M(O_2)^T + EO$	13.1	14.1	13.1	27.4	-23.9	-22.0	-23.4	-20.7	
$MO \cdot (O_2)^T + E$	$M(O)_2^T + EO$	27.4	28.5	27.8	41.3	14.9	16.6	15.8	16.6	
E _{sp}	an	34.0 ^b	36.2 ^b	34.9 ^c	58.4 ^d					

^a The transition state and product geometries are the same, because the reaction is completely uphill. ^b The TDI is $MO \cdot EO^{T}$ and the TDTS is TS_{15} . ^c The TDI is $MO \cdot EO^{T}$ and the TDTS is TS_{13} . ^d The TDI is MO^{T} and the TDTS is TS_{15} .

1.4. Computed ASMs

Table S7: Assigned spin magnetic moments (ASMs) for the DMZB triplet	conformations that do
not contain any adsorbed Me ₂ Py, Me ₂ PyO, or EO molecules.	

Species Zr		Non-ligand	l Oxygens	Nitro	ogens	Other Atoms	
Species	Zr	Strongly Ads.	Weakly Ads.	Ligand 1	Ligand 2	Other Atoms	
\mathbf{M}^{T}	0.7069	—	—	0.5264	0.0396	0.7272	
\mathbf{MO}^{T}	0.0098	0.0194	—	0.5000	0.4998	0.9710	
$M(O)_2^T$	0.0216	-0.9205 ^a	—	0.7604	0.4999	1.6386	
$M(O_2)^T$	0.0118	0.0125	—	0.4972	0.4972	0.9813	
$MO \cdot (O_2)^T$	-0.0069	-0.0019	1.0097	0.4988	0.0237	0.4766	
$M(\eta^2\text{-}O_3)^T$	0.0116	0.0182	—	0.4966	0.4965	0.9772	
$M(\eta^3\text{-}O_3)^T$	0.0090	0.0103	—	0.4973	0.4889	0.9946	
$\mathbf{M} \cdot (\mathbf{O}_2)_2^{\mathrm{T}}$	-0.0545	—	2.0096 ^b	0.4816	-0.4770	0.0404	
$MO{\boldsymbol{\cdot}}(\eta^2{\textbf{-}}O_3)^T$	0.0105	0.0083	0.9794	0.5018	0.0016	0.4984	
$MO {\boldsymbol{\cdot}} (\eta^3 {\boldsymbol{\cdot}} O_3)^T$	-0.0201	0.0287	0.9459	0.4954	-0.0084	0.5585	
$M(\eta^2\text{-}O_3)\text{-}(O_2)^T$	-0.0158	0.0030	1.0038	0.4948	0.0128	0.5015	
$M(\eta^3\text{-}O_3)\text{-}(O_2)^T$	-0.0136	0.0004	1.0006	0.4843	0.0351	0.4932	
$M \cdot (\eta^2 - O_3)_2^T$	-0.0037	—	1.9430 ^c	0.4799	-0.4910	0.0718	
$M(\eta^3\text{-}O_3)\text{-}(\eta^2\text{-}O_3)^T$	0.0076	0.0102	0.9789	0.4920	0.0014	0.5098	
$M(O_2) \cdot (O_2)_{butterfly}^T$	-0.0264	-0.0057	1.0013	0.4604	0.0218	0.5486	

^aTwo strongly adsorbed oxygen atoms have ASMs of 0.0097 and -0.9302; the summation is -0.9205.

^bTwo weakly adsorbed peroxo groups have ASMs of 1.0048 and 1.0048; the summation is 2.0096. ^c Two weakly adsorbed ozone groups have ASMs of 0.9723 and 0.9707; the summation is 1.9430.

-		Non-ligan	d Oxygens	Nitro	ogens	
Species	Zr	Strongly Ads.	Weakly Ads.	Ligand 1	Ligand 2	Other Atoms
$M(O_2) \cdot Me_2 Py^T$	0.0114	0.0053	—	0.4893	0.4888	1.0053
$M(\eta^3\text{-}O_3)\text{-}Me_2Py^T$	0.0124	0.0102	—	0.5025	0.4831	0.9918
MO·Me ₂ PyO ^T	0.0122	0.0099	-0.0004	0.4906	0.4901	0.9975
$M(O_2) \cdot Me_2 PyO^T$	0.0121	0.0084	0.0000	0.4890	0.4795	1.0110
$M(\eta^3\text{-}O_3)\text{-}Me_2PyO^T$	-0.0007	0.0040	0.0033	0.5059	0.4721	1.0154
MO·EO ^T	0.0183	0.0055	0.0017	0.4887	0.4837	1.0021
$M(O_2){\cdot}EO^T$	0.0131	0.0116	0.0007	0.4914	0.4833	0.9999
$M(\eta^2\text{-}O_3)\text{-}EO^{\mathrm{T}}$	0.0054	0.0102	0.0025	0.5214	0.4894	0.9710
$M(\eta^3\text{-}O_3)\text{\cdot}EO^{\rm T}$	0.0057	0.0048	0.0026	0.5208	0.4821	0.9841

Table S8: Assigned spin magnetic moments (ASMs) for the DMZB triplet conformations with adsorbed Me₂Py, Me₂PyO, or EO molecule.

		N & O	Nitre	ogens	
Species	Ru	Atoms in Ads. Group	Tethering Group	Porphyrin ring	Other Atoms
RuTDCPP ^T	1.9407	—	0.1109	0.0877	-0.1393
RuTDCPP(O) ^T	0.9001	1.0091	0.0037	-0.0039	0.0911
RuTDCPP(Me ₂ Py) ^T	0.8356	0.0006	-0.0057	0.2092	0.9603
RuTDCPP(Me ₂ PyO) ^T	0.8412	0.0520	-0.0014	0.1870	0.9211
RuTDCPP(P) ^T	0.7903	_	0.0005	0.2252	0.9839
RuTDCPP(PO) ^T	0.9036	-0.0050	-0.0131	0.2486	0.8659

Table S9: Assigned	spin magnetic moment	s (ASMs) for the RuTDCPP t	riplet conformations
()			

1.5. Computed Reaction Cycles and Energy Profiles

We use notation M to represent the $Zr(O-N(Ar)-C_6H_4-N(Ar)-O)_2$ [Ar = $-C_6H_3-2,6-Me_2$] (aka DMZB) bare structure and M' to represent the $Zr(O-N(Ar')-C_6H_4-N(Ar')-O)_2$ [Ar' = $-C_6H_3-2,6-{}^{i}Pr_2$] (aka DIZB) bare structure. The bisperoxo structures in this section are the spiro conformation.

ethylene epoxidation using molecular O₂ as the oxidant over the DMZB catalyst (Reaction cycle 2 is presented in Fig. S4 below. Reaction cycle 1 is presented in the main text.)

Fig. S4: (left panel) Triplet peroxo η^3 -ozone intermediate $(M(\eta^3-O_3)\cdot(O_2)^T)$ involved catalytic cycle for the ethylene epoxidation using the DMZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DMZB complex $(M \cdot (O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

2,6-dimethylpyridine oxidation using molecular O₂ as the oxidant over the DIZB catalyst (reaction cycle 1)

Fig. S5: (left panel) Triplet peroxo η^3 -ozone intermediate $(M'(\eta^3-O_3)\cdot(O_2)^T)$ involved catalytic cycle for the 2,6-dimethylpyridine oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M'\cdot(O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

2,6-dimethylpyridine oxidation using molecular O₂ as the oxidant over the DIZB catalyst (reaction cycle 2)

Fig. S6: (left panel) Triplet η^3 -ozone intermediate $(M'(\eta^3-O_3)^T)$ involved catalytic cycle for the 2,6-dimethylpyridine oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M' \cdot (O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

2,6-dichrolopyridine oxidation using molecular O₂ **as the oxidant over the DIZB catalyst** (reaction cycle 1)

Fig. S7: (left panel) Triplet peroxo η^3 -ozone intermediate $(M'(\eta^3-O_3)\cdot(O_2)^T)$ involved catalytic cycle for the 2,6-dichloropyridine oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M'\cdot(O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

2,6-dichrolopyridine oxidation using molecular O_2 as the oxidant over the DIZB catalyst (reaction cycle 2)

Fig. S8: (left panel) Triplet η^3 -ozone intermediate $(M'(\eta^3-O_3)^T)$ involved catalytic cycle for the 2,6-dichloropyridine oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M' \cdot (O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

pyridine oxidation using molecular O_2 as the oxidant over the DIZB catalyst (reaction cycle 1)

Fig. S9: (left panel) Triplet peroxo η^3 -ozone intermediate $(M'(\eta^3-O_3)\cdot(O_2)^T)$ involved catalytic cycle for the pyridine oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M' \cdot (O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

pyridine oxidation using molecular O₂ as the oxidant over the DIZB catalyst (reaction cycle 2)

Fig. S10: (left panel) Triplet η^3 -ozone intermediate $(M'(\eta^3-O_3)^T)$ involved catalytic cycle for the pyridine oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M' \cdot (O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

Fig. S11: (left panel) Triplet peroxo η^3 -ozone intermediate $(M'(\eta^3-O_3)\cdot(O_2)^T)$ involved catalytic cycle for the 4-nitroquinoline oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M'\cdot(O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

4-nitroquinoline oxidation using molecular O_2 as the oxidant over the DIZB catalyst (reaction cycle 2)

Fig. S12: (left panel) Triplet η^3 -ozone intermediate $(M'(\eta^3 - O_3)^T)$ involved catalytic cycle for the 4-nitroquinoline oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M' \cdot (O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

Fig. S13: (left panel) Triplet peroxo η^3 -ozone intermediate $(M'(\eta^3-O_3)\cdot(O_2)^T)$ involved catalytic cycle for the 2-chloropyridine oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M' \cdot (O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

2-chloropyridine oxidation using molecular O_2 as the oxidant over the DIZB catalyst (reaction cycle 2)

Fig. S14: (left panel) Triplet η^3 -ozone intermediate $(M'(\eta^3-O_3)^T)$ involved catalytic cycle for the 2-chloropyridine oxidation using the DIZB catalyst. For each step, the energies are labeled in kcal/mol. (right panel) SCF energy profile for this cycle. The triplet spiro bisperoxo form of the DIZB complex $(M' \cdot (O_2)_2^T)$ is the reference state. Activation barriers for major reaction steps and the whole catalytic cycle are presented in kcal/mol.

2. DFT-Optimized Geometries

2.1 DMZB Catalytic System (B3LYP/LANL2DZ)

2.1.1 Singlet Ground States

bare complex

Fig. S15: bare complex

E _{SCF}	E _{ZP}	Н	G
-2269.428306	-2268.639497	-2268.589492	-2268.719878

oxo complex

Fig. S16: oxo complex

ESCF	Ezp	Н	G
-2344.587395	-2343.798097	-2343.745654	-2343.885215

dioxo complex

Fig. S17: dioxo complex

ESCF	Ezp	Н	G
-2419.722737	-2418.929009	-2418.874659	-2419.019705

peroxo complex

Fig. S18: peroxo complex

ESCF	Ezp	Н	G
-2419.744884	-2418.952246	-2418.898069	-2419.041470

oxo peroxo complex

Fig. S19: oxo peroxo complex

ESCF	Ezp	Н	G
-2494.892149	-2494.096344	-2494.040590	-2494.187293

η^2 -ozone complex

Fig. S20: r	² -ozone complex
-------------	-----------------------------

E _{SCF}	E _{ZP}	Н	G
-2494.893052	-2494.097156	-2494.041891	-2494.187483

η^3 -ozone complex

Fig. S21: η^3 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2494.886148	-2494.090695	-2494.035258	-2494.181677

spiro bisperoxo complex

Fig. S22: spiro bisperoxo complex

ESCF	Ezp	Н	G
-2570.046698	-2569.248030	-2569.191491	-2569.340038

oxo $\eta^2\text{-ozone complex}$

Fig. S23: oxo η^2 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2570.050098	-2569.251105	-2569.194075	-2569.344777

peroxo η^2 -ozone complex

Fig. S24: peroxo η^2 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2645.210754	-2644.408219	-2644.350476	-2644.501189

peroxo η^3 -ozone complex

Fig. S25: peroxo η^3 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2645.202113	-2644.399109	-2644.341748	-2644.490827

bis-η²-ozone complex

Fig. S26: bis- η^2 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2720.355084	-2719.549135	-2719.490268	-2719.644067
$\eta^2\text{-ozone}\;\eta^3\text{-ozone}\;\text{complex}$

Fig. S27: η^2 -ozone η^3 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2720.350002	-2719.544047	-2719.485430	-2719.637132

oxo complex with adsorbed 2,6-dimethylpyridine molecule

Fig. S28: oxo complex with adsorbed 2,6-dimethylpyridine molecule

ESCF	Ezp	Н	G
-2671.460050	-2670.523491	-2670.461463	-2670.621939

peroxo complex with adsorbed 2,6-dimethylpyridine molecule

Fig. S29: peroxo complex with adsorbed 2,6-dimethylpyridine molecule

ESCF	Ezp	Н	G
-2746.605077	-2745.664790	-2745.602214	-2745.761662

 $\eta^2\mbox{-ozone}$ complex with adsorbed 2,6-dimethylpyridine molecule

Fig. S30: η^2 -ozone complex with adsorbed 2,6-dimethylpyridine molecule

ESCF	Ezp	Н	G
-2821.750903	-2820.808148	-2820.744783	-2820.906280

 $\eta^{3}\mbox{-}ozone$ complex with adsorbed 2,6-dimethylpyridine molecule

Fig. S31: $\eta^3\mbox{-}ozone$ complex with adsorbed 2,6-dimethylpyridine molecule

E _{SCF}	E _{ZP}	Н	G
-2821.736803	-2820.794579	-2820.730422	-2820.893729

oxo complex with adsorbed 2,6-dimethylpyridine N-oxide molecule

Fig. S32: oxo complex with adsorbed 2,6-dimethylpyridine N-oxide molecule

ESCF	Ezp	Н	G
-2746.639238	-2745.698586	-2745.635989	-2745.797669

peroxo complex with adsorbed 2,6-dimethylpyridine N-oxide molecule

Fig. S33: peroxo complex with adsorbed 2,6-dimethylpyridine N-oxide molecule

ESCF	Ezp	Н	G
-2821.793190	-2820.849172	-2820.785749	-2820.948143

 $\eta^2\mbox{-ozone}$ complex with adsorbed 2,6-dimethylpyridine $N\mbox{-oxide}$ molecule

Fig. S34: η^2 -ozone complex with adsorbed 2,6-dimethylpyridine *N*-oxide molecule

ESCF	Ezp	Н	G
-2896.937596	-2895.989102	-2895.925161	-2896.086626

 $\eta^3\mbox{-}ozone$ complex with adsorbed 2,6-dimethylpyridine $N\mbox{-}oxide$ molecule

Fig. S35: η^3 -ozone complex with adsorbed 2,6-dimethylpyridine *N*-oxide molecule

E _{SCF}	E _{ZP}	Н	G
-2896.925843	-2895.979006	-2895.915313	-2896.076563

oxo complex with adsorbed ethylene oxide molecule

Fig. S36: oxo complex with adsorbed ethylene oxide molecule

ESCF	Ezp	Н	G
-2498.344972	-2497.494453	-2497.437695	-2497.585797

peroxo complex with adsorbed ethylene oxide molecule

Fig. S37: peroxo complex with adsorbed ethylene oxide molecule

ESCF	Ezp	Н	G
-2573.510489	-2572.657821	-2572.599858	-2572.750577

 $\eta^2\mbox{-ozone}$ complex with adsorbed ethylene oxide molecule

Fig. S38: $\eta^2\mbox{-}ozone$ complex with adsorbed ethylene oxide molecule

E _{SCF}	Ezp	Н	G
-2648.657832	-2647.801521	-2647.742607	-2647.894730

 $\eta^{3}\mbox{-}ozone$ complex with adsorbed ethylene oxide molecule

Fig. S39: $\eta^3\mbox{-}ozone$ complex with adsorbed ethylene oxide molecule

E _{SCF}	E _{ZP}	Н	G
-2648.647354	-2647.791685	-2647.732730	-2647.884592

butterfly bisperoxo complex

Fig. S40: butterfly bisperoxo complex

ESCF	Ezp	Н	G
-2570.038145	-2569.240157	-2569.182904	-2569.334142

planar bisperoxo complex

Fig. S41: planar bisperoxo complex

ESCF	Ezp	Н	G
-2570.056004	-2569.257121	-2569.200468	-2569.348660

2.1.2 Triplet Ground States

bare complex

Fig. S42: bare complex

E _{SCF}	E _{ZP}	Н	G
-2269.342198	-2268.557133	-2268.505484	-2268.645720

oxo complex

Fig. S43: oxo complex

ESCF	Ezp	Η	G
-2344.606390	-2343.817488	-2343.764886	-2343.906190

dioxo complex

Fig. S44: dioxo complex

Escf	Ezp	Н	G
-2419.718452	-2418.927052	-2418.871988	-2419.019945

peroxo complex

Fig. S45: peroxo complex

ESCF	Ezp	Н	G
-2419.761241	-2418.969208	-2418.915717	-2419.058182

oxo peroxo complex

Fig. S46: oxo peroxo complex

ESCF	Ezp	Н	G
-2494.921548	-2494.127226	-2494.070724	-2494.222045

η^2 -ozone complex

Fig. S47: η^2 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2494.908355	-2494.112813	-2494.057373	-2494.204573

η^3 -ozone complex

Fig. S48: η^3 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2494.902426	-2494.107785	-2494.051953	-2494.200864

spiro bisperoxo complex

Fig. S49: spiro bisperoxo complex

ESCF	Ezp	Н	G
-2570.087004	-2569.289408	-2569.232309	-2569.383422

oxo $\eta^2\text{-ozone complex}$

Fig. S50: oxo $\eta^2\text{-ozone complex}$

E _{SCF}	E _{ZP}	Н	G
-2570.066935	-2569.268483	-2569.211152	-2569.362831

oxo $\eta^3\text{-ozone complex}$

Fig. S51: oxo η^3 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2570.033726	-2569.236438	-2569.179473	-2569.330353

peroxo η^2 -ozone complex

Fig. S52: peroxo η^2 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2645.223403	-2644.422665	-2644.364303	-2644.518130

peroxo η^3 -ozone complex

Fig. S53: peroxo η^3 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2645.218708	-2644.417808	-2644.359741	-2644.512188

bis-η²-ozone complex

Fig. S54: bis- η^2 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2720.358353	-2719.554319	-2719.495168	-2719.650382

$\eta^2\text{-ozone}\;\eta^3\text{-ozone}\;\text{complex}$

Fig. S55: η^2 -ozone η^3 -ozone complex

E _{SCF}	E _{ZP}	Н	G
-2720.357268	-2719.552528	-2719.493458	-2719.647454

peroxo complex with adsorbed 2,6-dimethylpyridine molecule

Fig. S56: peroxo complex with adsorbed 2,6-dimethylpyridine molecule

ESCF	Ezp	Н	G
-2746.624144	-2745.684365	-2745.621467	-2745.783309

 $\eta^2\mbox{-ozone}$ complex with adsorbed 2,6-dimethylpyridine molecule

Fig. S57: η^2 -ozone complex with adsorbed 2,6-dimethylpyridine molecule

ESCF	Ezp	Н	G
-2821.769170	-2820.826698	-2820.762456	-2820.927571

 $\eta^3\mbox{-}ozone$ complex with adsorbed 2,6-dimethylpyridine molecule

Fig. S58: $\eta^3\mbox{-}ozone$ complex with adsorbed 2,6-dimethylpyridine molecule

E _{SCF}	E _{ZP}	Н	G
-2821.764101	-2820.822013	-2820.757768	-2820.922739

oxo complex with adsorbed 2,6-dimethylpyridine N-oxide molecule

Fig. S59: oxo complex with adsorbed 2,6-dimethylpyridine N-oxide molecule

ESCF	Ezp	Н	G
-2746.658259	-2745.718090	-2745.655284	-2745.818166

peroxo complex with adsorbed 2,6-dimethylpyridine N-oxide molecule

Fig. S60: peroxo complex with adsorbed 2,6-dimethylpyridine *N*-oxide molecule

ESCF	Ezp	Н	G
-2821.809970	-2820.866500	-2820.802850	-2820.966603

 $\eta^2\mbox{-ozone}$ complex with adsorbed 2,6-dimethylpyridine $N\mbox{-oxide}$ molecule

Fig. S61: η^2 -ozone complex with adsorbed 2,6-dimethylpyridine *N*-oxide molecule

ESCF	Ezp	Н	G
-2896.950954	-2896.003893	-2895.939422	-2896.104823

 $\eta^3\mbox{-}ozone$ complex with adsorbed 2,6-dimethylpyridine $N\mbox{-}oxide$ molecule

Fig. S62: η^3 -ozone complex with adsorbed 2,6-dimethylpyridine *N*-oxide molecule

E _{SCF}	E _{ZP}	Н	G
-2896.946948	-2896.000408	-2895.935937	-2896.100510

oxo complex with adsorbed ethylene oxide molecule

Fig. S63: oxo complex with adsorbed ethylene oxide molecule

ESCF	Ezp	Н	G
-2498.382118	-2497.533308	-2497.475927	-2497.627302

peroxo complex with adsorbed ethylene oxide molecule

Fig. S64: peroxo complex with adsorbed ethylene oxide molecule

ESCF	Ezp	Н	G
-2573.527775	-2572.675738	-2572.617506	-2572.770094

 $\eta^2\mbox{-ozone}$ complex with adsorbed ethylene oxide molecule

Fig. S65: $\eta^2\mbox{-}ozone$ complex with adsorbed ethylene oxide molecule

E _{SCF}	E _{ZP}	Н	G
-2648.671752	-2647.816929	-2647.758257	-2647.911604

 $\eta^{3}\mbox{-}ozone$ complex with adsorbed ethylene oxide molecule

Fig. S66: $\eta^3\mbox{-}ozone$ complex with adsorbed ethylene oxide molecule

E _{SCF}	E _{ZP}	Н	G
-2648.665966	-2647.811292	-2647.751802	-2647.908745

butterfly bisperoxo complex

Fig. S67: butterfly bisperoxo complex

ESCF	Ezp	Н	G
-2570.069497	-2569.272592	-2569.215238	-2569.367529

2.1.3 Triplet Transition States (2,6-dimethylpyridine involved structures)

TS(3): peroxo $\eta^3\text{-}ozone$ complex to spiro bisperoxo complex

Fig. S68: peroxo η^3 -ozone complex to spiro bisperoxo complex

E _{SCF}	E _{ZP}	Н	G	f
-2972.067602	-2971.121521	-2971.054402	-2971.228074	-210

TS(4): spiro bisperoxo complex to oxo peroxo complex

Fig.	S69:	spiro	bisperoxo	complex	to oxo	peroxo	complex
	~ ~ .	00.00	01000010110	•••••••		p • • • • • • • •	•••••••

ESCF	Ezp	Н	G	f
-2896.915704	-2895.972865	-2895.906821	-2896.079385	-354

TS(8): η^3 -ozone complex to peroxo complex

Fig.	S70:	η^3 -ozone	complex	to pe	eroxo	comple	x
ω			1			1	

E _{SCF}	E _{ZP}	Н	G	f
-2821.749736	-2820.808875	-2820.744890	-2820.909587	-255

TS(9): peroxo complex to oxo complex

Fig. S71: peroxo complex to oxo complex

ESCF	Ezp	Н	G	f
-2746.598892	-2745.661445	-2745.598284	-2745.762890	-358

oxo peroxo complex to dioxo complex

Fig. S72: oxo peroxo complex to dioxo complex

ESCF	Ezp	Н	G	f
-2821.732240	-2820.792979	-2820.727988	-2820.898102	-350

 $\eta^2\mbox{-ozone}~\eta^3\mbox{-ozone}$ complex to peroxo $\eta^2\mbox{-ozone}$ complex

Fig. S73: $\eta^2\mbox{-}ozone~\eta^3\mbox{-}ozone~complex$ to peroxo $\eta^2\mbox{-}ozone~complex$

E _{SCF}	E _{SCF} E _{ZP}		G	f
-3047.204502	-3046.254709	-3046.186583	-3046.361765	-199

oxo $\eta^3\mbox{-ozone}$ complex to oxo peroxo complex

Fig. S74	l: oxo r	³ -ozone	complex	to oxo	peroxo	complex
0					1	

E _{SCF}	E _{ZP}	Н	G	f
-2896.879670	-2895.936620	-2895.870760	-2896.042713	-224

2.1.4 Triplet Transition States (ethylene involved structures)

TS(15): peroxo $\eta^3\mbox{-ozone}$ complex to spiro bisperoxo complex

Fig. S75: peroxo η^3 -ozone complex to spiro bisperoxo complex

E _{SCF}	EZP	Н	G	f
-2723.778011	-2722.924759	-2722.862791	-2723.025009	-346

TS(16): spiro bisperoxo complex to oxo peroxo complex

	Fig.	S76:	spiro	bisperoxo	complex to	oxo	peroxo comple	ex
--	------	------	-------	-----------	------------	-----	---------------	----

ESCF	SCF EZP		G	f
-2648.627235	-2647.777006	-2647.716276	-2647.875622	-446

TS(11): oxo complex with adsorbed EO molecule to $\eta^2\mbox{-ozone}$ complex with adsorbed EO molecule

Fig. S77: oxo complex with adsorbed EO molecule to $\eta^2\mbox{-ozone}$ complex with adsorbed EO molecule

E _{SCF}	E _{SCF} E _{ZP}		G	f
-2648.655914	-2647.801357	-2647.742409	-2647.897209	-10

TS(12): $\eta^2\text{-}ozone$ complex with adsorbed EO molecule to $\eta^3\text{-}ozone$ complex with adsorbed EO molecule

Fig. S78: $\eta^2\mbox{-}ozone$ complex with adsorbed EO molecule to $\eta^3\mbox{-}ozone$ complex with adsorbed EO molecule

E _{SCF}	E _{ZP}	Н	G	f
-2648.663861	-2647.809599	-2647.750749	-2647.905040	-144

TS(13): $\eta^3\mbox{-}ozone$ complex with adsorbed EO molecule to peroxo complex with adsorbed EO molecule

Fig. S79: $\eta^3\mbox{-}ozone$ complex with adsorbed EO molecule to peroxo complex with adsorbed EO molecule

E _{SCF} E _{ZP}		Н	G	f
-2727.220678	-2726.313089	-2726.251401	-2726.409662	-383

TS(14): peroxo complex with adsorbed EO molecule to oxo complex with adsorbed EO molecule

Fig. S80: peroxo complex with adsorbed EO molecule to oxo complex with adsorbed EO molecule

E _{SCF}	E _{ZP}	Н	G	f
-2652.071454	-2651.167033	-2651.105354	-2651.264425	-462

 $\eta^3\mbox{-ozone}$ complex to peroxo complex

Fig. S81: $\eta^3\mbox{-}ozone$ complex to peroxo complex

E _{SCF}	E _{ZP}	Н	G	f
-2573.459738	-2572.612241	-2572.553941	-2572.706284	-366

oxo peroxo complex to dioxo complex

	Fig.	S82:	oxo	peroxo	complex	to	dioxo	complex
--	------	------	-----	--------	---------	----	-------	---------

ESCF	Ezp	Н	G	f
-2573.456126	-2572.608602	-2572.549339	-2572.705258	-642

2.1.5 Triplet Transition States (other structures)

TS(1): oxo peroxo complex to peroxo $\eta^2\mbox{-ozone}$ complex

Fig. S83: oxo peroxo complex to peroxo $\eta^2\mbox{-}ozone$ complex

E _{SCF}	E _{ZP}	Н	G	f
-2645.211141	-2644.409757	-2644.352235	-2644.504049	-35

TS(2): peroxo $\eta^2\text{-}ozone$ complex to peroxo $\eta^3\text{-}ozone$ complex

Fig. S84: peroxo $\eta^2\text{-ozone}$ complex to peroxo $\eta^3\text{-ozone}$ complex

E _{SCF}	E _{ZP}	Н	G	f
-2645.216369	-2644.416113	-2644.358454	-2644.510736	-168

TS(5): oxo complex to oxo peroxo complex

Fig. S85: oxo complex to oxo peroxo complex

ESCF	Ezp	Н	G	f
-2494.908781	-2494.115258	-2494.059286	-2494.209244	-48

TS(7): n	² -ozone	complex	x to n	³ -ozone	complex
	one	compres	וי ייי א	onome	compion

Fig. S86: $\eta^2\mbox{-}ozone$ complex to $\eta^3\mbox{-}ozone$ complex

E _{SCF}	E _{ZP}	Н	G	f
-2494.902091	-2494.107641	-2494.052510	-2494.199600	-135

2.1.6 Approximate Crossing Point Geometry

Approximate CP(1): oxo complex to η^2 -ozone complex (triplet geometry)

Fig. S87: oxo complex to η^2 -ozone complex (triplet geometry)

	E _{SCF}	E _{ZP}	Н	G
Triplet	-2494.882652	-2494.089846	-2494.034750	-2494.180502
Quintet	-2494.885459	n/a	n/a	n/a
С	0.250944	3.450674	-1.100828	
С	1.007355	4.404751	-0.369516	
С	2.011625	5.112959	-1.061098	
С	2.254563	4.883830	-2.426761	
С	1.496563	3.928858	-3.125796	
С	0.485555	3.191353	-2.476774	
С	-4.010443	-0.171752	0.690825	
С	-4.499173	0.059440	2.001165	
С	-5.497367	-0.808978	2.488375	
С	-5.983043	-1.868565	1.703786	
С	-5.480915	-2.073327	0.406674	
С	-4.485377	-1.229497	-0.124704	
С	-0.101841	-3.454029	-1.182857	
С	-0.282036	-3.189100	-2.566224	
С	-1.268423	-3.923939	-3.255067	
С	-2.053117	-4.880461	-2.588529	
С	-1.865445	-5.111721	-1.214638	
С	-0.890718	-4.404557	-0.481053	
С	3.931759	0.269356	0.847750	
С	4.309590	0.067324	2.199790	
С	5.249738	0.961829	2.754254	
С	5.785167	2.016243	1.995622	
С	5.397777	2.188534	0.654959	

С	4.466772	1.317078	0.055567
Н	2.597417	5.854132	-0.522493
Н	3.031286	5.444254	-2.941879
Н	1.693167	3.742472	-4.179125
Н	-5.878700	-0.659121	3.495393
Н	-6.748595	-2.531053	2.101109
Н	-5.863309	-2.888465	-0.203346
Н	-1.425394	-3.733171	-4.314217
Н	-2.809655	-5.438770	-3.134949
Н	-2.474920	-5.850897	-0.700363
Н	5.547805	0.832808	3.791790
Н	6.503305	2.697866	2.445791
Н	5.820587	2.997976	0.064379
С	2.269459	-2.845509	-0.670264
С	3.253719	-1.882988	-0.220756
С	2.724341	-4.036728	-1.320829
С	4.637331	-2.254711	-0.304299
С	4.074142	-4.335535	-1.437002
Н	1.980921	-4.742951	-1.674551
С	5.040654	-3.442279	-0.896713
Н	5.379508	-1.557901	0.068014
Н	4.386167	-5.262549	-1.909531
Н	6.099428	-3.677618	-0.962381
C	-3.188688	1.978421	-0.283391
C	-2.143274	2.907486	-0.664226
Ċ	-4.552758	2.400541	-0.432828
Č	-2.528604	4.130970	-1.302597
C	-4.885396	3.614097	-1.014508
Н	-5.336687	1.719335	-0.122466
C	-3.859097	4.483092	-1.477546
Н	-1.745834	4.817587	-1.605791
H	-5.930269	3.888130	-1.130695
Н	-4.111007	5.433082	-1.940595
0	1.757357	0.018728	-0.142679
N	2.950755	-0.616039	0.248199
0	0.437972	-2.045098	0.658559
0	-0.368327	2.022392	0.709476
0	-1.770775	0.036867	-0.125097
Ň	0.900816	-2.704033	-0.461308
N	-2.963818	0.685112	0.164549
N	-0.787578	2.704652	-0.428994
0	0.708832	0.334936	2.891407
0	-0.518331	-0.819855	3.687521
0	-1 472183	-0.988963	2 691119
Zr	0.019226	-0.013240	1 094496
C	3 723160	-1.043067	3 048173
н	2 652827	-0.867152	3 212025
Н	3 836806	-2 028539	2 579317
н	4 215919	-1 075694	4 026031
C	4.069068	1.075024	-1 395202
н	4 132115	0 549281	-1 9/18187
H	3 033318	1 840260	-1.240107
H	<u>4</u> 718702	2 227193	-1.475333
C	_0 317203	2.227175	-3 2/15655
Ч	-0.317203	1 257681	-3.243033
н	-0.+715/7 1 20//77	2 550602	-2.047130
11	-1.304477	2.550000	-5.529045

Н	0.205354	1.875935	-4.165743
С	0.749195	4.685206	1.097070
Н	-0.323409	4.765682	1.311101
Н	1.125005	3.869469	1.724415
Н	1.237259	5.617962	1.401020
С	-3.969656	1.178157	2.874940
Н	-2.894286	1.054919	3.042425
Н	-4.130817	2.167185	2.427251
Н	-4.464131	1.165686	3.851893
С	-3.960489	-1.450494	-1.528723
Н	-3.922682	-0.512534	-2.097574
Н	-2.939812	-1.846502	-1.505316
Н	-4.596041	-2.158649	-2.071497
С	0.542507	-2.150113	-3.302559
Н	0.042091	-1.855342	-4.231389
Н	0.704049	-1.254103	-2.693336
Н	1.535346	-2.539438	-3.568058
С	-0.705446	-4.677447	0.997978
Н	0.354854	-4.745015	1.269594
Н	-1.124721	-3.863344	1.600006
Н	-1.198581	-5.614922	1.278523

2.2. DIZB Catalytic System (B3LYP/LANL2DZ)

2.2.1 Triplet Ground States

oxo complex with adsorbed 2,6-dimethylpyridine N-oxide

Fig. S88: oxo complex with adsorbed 2,6-dimethylpyridine N-oxide

E _{SCF}	Ezp	Н	G
-3375.545197	-3374.148123	-3374.063466	-3374.271513

oxo complex with adsorbed 2,6-dichrolopyridine N-oxide

Fig. S89: oxo complex with adsorbed 2,6-dichrolopyridine N-oxide

ESCF	Ezp	Н	G
-3325.550459	-3324.229600	-3324.145504	-3324.353280

oxo complex with adsorbed 2-chloropyridine N-oxide

Fig. S90: oxo complex with adsorbed 2-chloropyridine *N*-oxide

ESCF	Ezp	Н	G
-3311.238980	-3309.908897	-3309.825684	-3310.033667

Fig. S91: oxo complex with adsorbed pyridine N-oxide

ESCF	Ezp	Н	G	
-3296.909724	-3295.568984	-3295.487069	-3295.691733	

oxo complex with adsorbed 4-nitroquinoline N-oxide

Fig. S92: oxo complex with adsorbed 4-nitroquinoline *N*-oxide

ESCF	Ezp	Н	G	
-3654.984464	-3653.595280	-3653.508087	-3653.723742	

2.2.2 Triplet Transition States (2,6-dimethylpyridine involved structures)

TS(22): peroxo η^3 -ozone complex to spiro bisperoxo complex

Fig. S93: peroxo η^3 -ozone complex to spiro bisperoxo complex

E _{SCF}	EZP	Н	G	f
-3600.941844	-3599.539192	-3599.449997	-3599.670332	-198

TS(23): spiro bisperoxo complex to oxo peroxo complex

Fig. S	4: spiro	bisperoxo	complex	to oxo	peroxo con	plex
--------	----------	-----------	---------	--------	------------	------

ESCF	Ezp	Н	G	f
-3525.798859	-3524.398527	-3524.310764	-3524.526998	-356

Fig. S95: $\eta^3\mbox{-}ozone$ complex to peroxo complex

E _{SCF}	E _{ZP}	Н	G	f
-3450.626079	-3449.228421	-3449.142574	-3449.353945	-260

TS(27): peroxo complex to oxo complex

Fig. S96: peroxo complex to oxo comple
--

ESCF	Ezp	Н	G	f
-3375.477177	-3374.081597	-3373.997370	-3374.204113	-357
TS(28): peroxo η^3 -ozone complex to spiro bisperoxo complex

Fig. S97: peroxo η^3 -ozone complex to spiro bisperoxo complex

E _{SCF} E _{ZP}		Н	G	f
-3550.971984	-3549.645104	-3549.557847	-3549.772099	-367

TS(29): spiro bisperoxo complex to oxo peroxo complex

ESCF	Ezp	Н	G	f	
-3475.814362	-3474.489577	-3474.402543	-3474.618879	-491	

Fig. S99: η^3 -ozone complex to peroxo complex

E _{SCF}	E _{ZP}	Н	G	f
-3400.650685	-3399.328998	-3399.243993	-3399.453404	-408

TS(30): $\eta^3\text{-ozone}$ complex to peroxo complex

TS(31): peroxo complex to oxo complex

Fig.	S100:	peroxo	comple	x to	oxo	comp	lex

ESCF	Ezp	Н	G	f
-3325.499391	-3324.180152	-3324.096584	-3324.302481	-481

2.2.4 Triplet Transition States (2-chloropyridine involved structures)

TS(40): peroxo η^3 -ozone complex to spiro bisperoxo complex

Fig. S101: peroxo $\eta^3\mbox{-}ozone$ complex to spiro bisperoxo complex

E _{SCF}	E _{ZP}	Н	G	f
-3536.654823	-3535.317085	-3535.230481	-3535.443442	-299

TS(41): spiro bisperoxo complex to oxo peroxo complex

Fig.	S102:	spiro	bisperoxo	complex t	o oxo	peroxo	complex
· · · · · ·	0102.	Spho	onsperono	compress t	0 0 10	peromo	compion

ESCF	Ezp	Н	G	f
-3461.505222	-3460.171103	-3460.085140	-3460.299216	-399

Fig. S103: $\eta^3\mbox{-}ozone$ complex to peroxo complex

E _{SCF}	E _{ZP}	Н	G	f	
-3386.336472	-3385.004399	-3384.920719	-3385.127533	-342	

TS(43): peroxo complex to oxo complex

Fig. S104: peroxo complex to oxo complex

ESCF	Ezp	Н	G	f
-3311.189228	-3309.860013	-3309.777534	-3309.980573	-398

2.2.5 Triplet Transition States (pyridine involved structures)

TS(32): peroxo η^3 -ozone complex to spiro bisperoxo complex

Fig. S105: peroxo η^3 -ozone complex to spiro bisperoxo complex

E _{SCF} E _{ZP}		Н	G	f
-3522.326489	-3520.979071	-3520.893398	-3521.105781	-227

TS(33): spiro bisperoxo complex to oxo peroxo complex

Fig.	S106:	spiro	bisperoxo	complex	to oxo	peroxo	complex
<u></u>							

ESCF	Ezp	Н	G	f
-3447.147533	-3445.804139	-3445.720751	-3445.928145	-368

Fig. S107: $\eta^3\mbox{-}ozone$ complex to peroxo complex

E _{SCF}	E _{ZP}	Н	G	f
-3372.006297	-3370.664463	-3370.581950	-3370.786228	-262

TS(35): peroxo complex to oxo complex

Fig.	S108:	peroxo	complex	to oxo	complex
------	-------	--------	---------	--------	---------

ESCF	Ezp	Н	G	f
-3296.860443	-3295.521318	-3295.439885	-3295.641564	-341

2.2.6 Triplet Transition States (4-nitroquinoline involved structures)

TS(36): peroxo $\eta^3\mbox{-ozone}$ complex to spiro bisperoxo complex

Fig. S109: peroxo η^3 -ozone complex to spiro bisperoxo complex

E _{SCF}	E _{ZP}	Н	G	f
-3880.408940	-3879.013444	-3878.922410	-3879.147678	-283

TS(37): spiro bisperoxo complex to oxo peroxo complex

Fig. S110: spiro bisperoxo complex to oxo peroxo complex

E _{SCF}	Ezp	Н	G	f
-3805.260107	-3803.867360	-3803.777465	-3804.000693	-390

Fig. S111: η^3 -ozone complex to peroxo complex

E _{SCF}	E _{ZP}	Н	G	f
-3730.090484	-3728.699522	-3728.612067	-3728.826029	-314

TS(38): η^3 -ozone complex to peroxo complex

TS(39): peroxo complex to oxo complex

Fig. S112: peroxo complex to oxo complex

ESCF	Ezp	Н	G	f
-3654.944275	-3653.556634	-3653.470027	-3653.684005	-385

2.3. RuTDCPP (Tethered) Catalytic System (B3LYP/LANL2DZ)

2.3.1 Singlet Ground States

bare complex

Fig. S113: bare complex

E _{SCF}	Ezp	Н	G
-2526.263396	-2525.583450	-2525.522619	-2525.687582

oxo complex

Fig. S114: oxo complex

ESCF	Ezp	Η	G	
-2601.423796	-2600.741449	-2600.679189	-2600.846757	

with adsorbed propene molecule

Fig. S115: with adsorbed propene molecule

ESCF	E _{SCF} E _{ZP}		G	
-2644.173568	-2643.410832	-2643.345298	-2643.518674	

with adsorbed propylene oxide molecule

Fig.	S116:	with	adsorbed	propylene	oxide	molecule
B.	×110.		44501004	propjiene	omae	1110100010

ESCF	Ezp	Н	G
-2719.370028	-2718.602755	-2718.536193	-2718.712847

with adsorbed 2,6-dimethylpyridine molecule

ESCF	Ezp	Н	G
-2853.134976	-2852.308066	-2852.238562	-2852.420987

with adsorbed 2,6-dimethylpyridine N-oxide molecule

Escf	Ezp	Н	G
-2928.326852	-2927.496677	-2927.425950	-2927.611029

with adsorbed pyridine molecule

Fig. S119: with adsorbed	pyridine molecule
--------------------------	-------------------

ESCF	Ezp	Н	G
-2774.553048	-2773.781545	-2773.715333	-2773.891439

with adsorbed pyridine N-oxide molecule

Fig. S120: with adsorbed pyridine *N*-oxide molecule

ESCF	Ezp	Н	G
-2849.701040	-2848.926835	-2848.859219	-2849.040840

2.3.2 Triplet Ground States

bare complex

Fig. S121: bare complex

E _{SCF}	E _{ZP}	Н	G
-2526.220481	-2525.543126	-2525.481466	-2525.649593

oxo complex

Fig. S122: oxo complex

Escf	Ezp	Н	G
-2601.459665	-2600.777382	-2600.715115	-2600.883810

with adsorbed propene molecule

Fig. S123: with adsorbed propene molecule

ESCF	Ezp	Н	G
-2644.126470	-2643.365759	-2643.299857	-2643.299857

with adsorbed propylene oxide molecule

Fig. S124: with adsorbed propylene oxide molecule

ESCF	Ezp	Н	G
-2719.310022	-2718.545566	-2718.478393	-2718.658549

with adsorbed propylene oxide molecule (*)

ESCF	Ezp	Н	G
-2719.335928	-2718.572533	-2718.505160	-2718.684756

with adsorbed 2,6-dimethylpyridine molecule

ESCF	Ezp	Н	G
-2853.092973	-2852.267888	-2852.198315	-2852.380608

with adsorbed 2,6-dimethylpyridine N-oxide molecule

Escf	Ezp	Н	G
-2928.290666	-2927.461809	-2927.391150	-2927.576285

with adsorbed pyridine molecule

Fig.	S128:	with	adsorbed	pyridine	molecul	le
	~					

ESCF	Ezp	Н	G
-2774.508468	-2773.739568	-2773.672883	-2773.851102

Fig. S129: with adsorbed pyridine *N*-oxide molecule

ESCF	Ezp	Н	G
-2849.645087	-2848.873286	-2848.805364	-2848.986451

2.3.3 Quintet Ground States

bare complex

Fig. S130: bare complex

E _{SCF}	E _{ZP}	Н	G
-2526.177279	-2525.502776	-2525.440655	-2525.611094

oxo complex

Fig. S131: oxo complex

ESCF	Ezp	Н	G
-2601.396829	-2600.719495	-2600.656538	-2600.827603

with adsorbed propene molecule

Fig. S132: with adsorbed propene molecule

ESCF	Ezp	Н	G
-2644.068924	-2643.310632	-2643.244393	-2643.420859

Fig. S133: with adsorbed propylene oxide molecule

ESCF	Ezp	Н	G	
-2719.266126	-2718.503830	-2718.436472	-2718.616661	

with adsorbed 2,6-dimethylpyridine molecule

ESCF	Ezp	Н	G	
-2853.036978	-2852.214087	-2852.144171	-2852.327951	

with adsorbed 2,6-dimethylpyridine N-oxide molecule

ESCF	Ezp	Н	G	
-2928.246842	-2927.421867	-2927.349581	-2927.542356	

2.3.4 Triplet Transition State

TS(10): propylene oxide like intermediate formation

Fig. S136: propylene oxide like intermediate formation

E _{SCF}	E _{ZP}	Н	G	f
-2719.322492	-2718.560062	-2718.492966	-2718.671878	-531

2.3.5 Approximate Crossing Point Geometries

Approximate CP(2): oxo formation (singlet geometry)

Fig. S137: oxo formation (singlet geometry)

	E _{SCF}	E _{ZP}	Н	G
Singlet	-2928.281192	-2927.453587	-2927.382846	-2927.568494
Triplet	-2928.282122	n/a	n/a	n/a
Ν	-0.191861	-2.054995	-0.338803	
Ν	-2.095898	-0.073184	0.633598	
Ν	1.621623	0.081315	-1.213896	
Ν	-0.341165	2.062739	-0.290165	
С	0.844840	-2.836814	-0.850864	
С	0.533619	-4.247514	-0.625705	
С	-0.663041	-4.303032	0.038514	
С	-1.121052	-2.928012	0.223996	
Н	1.158676	-5.076653	-0.925771	
Н	-1.191363	-5.184544	0.373262	
С	-2.301689	-2.551131	0.886808	
С	2.027545	-2.362194	-1.441651	
С	-3.951796	-0.843211	1.789730	
С	-3.998358	0.532782	1.811831	
С	-2.831411	1.017640	1.099777	
С	-2.754833	-1.225198	1.065225	
Н	-4.663350	-1.530617	2.224400	
Н	-4.754523	1.155910	2.267603	
С	-2.471513	2.376349	0.959344	
С	2.300746	1.229373	-1.587273	
С	3.555405	0.852301	-2.220415	
С	3.607486	-0.522965	-2.232810	
С	2.384909	-1.004833	-1.607923	

Н	4.290117	1.542259	-2.610589
Н	4.392164	-1.148305	-2.634359
С	-0.970296	4.261515	0.141460
С	0.221582	4.307279	-0.532331
С	0.632301	2.928100	-0.790386
С	-1.326002	2.853079	0.298650
Н	-1.558122	5.094916	0.499462
Н	0.782159	5.185918	-0.818730
С	1.843741	2.552712	-1.394637
С	-3.088923	-3.637059	1.565803
С	-4.216555	-4.266527	0.993488
С	-4.945335	-5.281674	1.630779
С	-4.548243	-5.705895	2.910128
С	-3.438489	-5.110241	3.534455
С	-2.742405	-4.099121	2.858004
Н	-5.801636	-5.726989	1.135667
Н	-5.100411	-6.491559	3.417839
Н	-3.121082	-5.419847	4.524392
С	3.016251	-3.387580	-1.922522
С	4.029760	-3.915544	-1.091174
С	4.966595	-4.867368	-1.517879
С	4.907445	-5.331609	-2.843404
С	3.920015	-4.842790	-3.715946
С	3.003946	-3.891418	-3.243434
Н	5.721083	-5.234090	-0.830195
Н	3.859650	-5.190306	-4.741800
С	2.751136	3.658279	-1.857682
С	3.727279	4.242350	-1.019356
С	4.587197	5.271138	-1.428932
С	4.484984	5.758576	-2.743501
С	3.531403	5.216377	-3.622117
С	2.692083	4.188727	-3.166826
Н	5.315758	5.679131	-0.736556
Н	5.142647	6.555103	-3.079756
Н	3.438479	5.581161	-4.639515
С	-3.321632	3.384015	1.681573
С	-2.986531	3.828483	2.983100
С	-3.740307	4.765474	3.702864
С	-4.899810	5.300611	3.115099
С	-5.287430	4.890619	1.828257
С	-4.499952	3.950454	1.147125
Н	-3.428860	5.064845	4.697835
Н	-6.181056	5.289746	1.360486
Н	-5.497329	6.028185	3.656843
Н	5.625064	-6.068416	-3.192959
Cl	-1.326144	-3.355955	3.731859
Cl	-4.791155	-3.758538	-0.656911
Cl	-5.065298	3.456909	-0.510822
Cl	-1.507175	3.159344	3.811866
Cl	1.479118	3.527096	-4.346991
Cl	3.903786	3.660391	0.699263
Cl	1.751505	-3.295252	-4.417322
Cl	4.155682	-3.359577	0.640414
Н	0.241910	-0.825931	2.104349
Н	0.193196	0.834262	2.114632
Ν	0.622289	0.018829	1.665860

С	2.111254	0.060158	1.829054
Н	2.475898	0.963204	1.330292
Н	2.527344	-0.800467	1.297119
С	2.560796	0.044680	3.304880
Н	2.132782	0.908713	3.833481
Н	2.175295	-0.860105	3.798401
С	4.107255	0.082177	3.418102
Н	4.490165	0.991839	2.933381
Н	4.542755	-0.767665	2.873281
Si	4.731860	0.028715	5.174698
0	4.118015	1.392630	5.948488
Н	3.997921	1.537488	6.898558
0	4.224733	-1.360105	5.979113
Н	4.801235	-2.025155	6.384187
0	6.420404	-0.042171	5.297408
Н	7.074760	0.636146	5.074107
Ru	-0.303867	0.002977	-0.380237
С	-2.931764	-1.263096	-3.612360
С	-3.997508	-1.319896	-4.538332
С	-4.601518	-0.128153	-4.972186
С	-4.117110	1.102684	-4.499013
С	-3.049395	1.121263	-3.573761
Н	-5.422478	-0.157118	-5.684353
Н	-4.326587	-2.285766	-4.908642
Н	-4.540659	2.042805	-4.838251
Ν	-2.529080	-0.055442	-3.142138
0	-0.752910	0.020864	-2.225952
С	-2.446099	2.405689	-3.072500
Н	-2.778161	2.615746	-2.050988
Н	-1.357823	2.313854	-3.046017
Н	-2.742262	3.245617	-3.710073
С	-2.203762	-2.497273	-3.152363
Н	-1.131707	-2.293736	-3.106437
Н	-2.523186	-2.781656	-2.144746
Н	-2.403964	-3.337027	-3.826450

Approximate CP(3): propylene oxide formation (singlet geometry)

Fig.	S138:	propylene	oxide fo	ormation (singlet	geometry)
0		F - F 2			0 0 0	0

	ESCF	Ezp	Н	G
Singlet	-2719.329388	-2718.565139	-2718.498069	-2718.675873
Triplet	-2719.324565	-2718.561366	-2718.495796	-2718.669704
-				
Ν	-2.291474	0.173862	-0.029454	
Ν	-0.118389	2.068682	-0.551958	
Ν	-0.457060	-2.041905	-0.476911	
Ν	1.698901	-0.168505	-1.058477	
С	-3.173060	-0.869495	0.249089	
С	-4.471411	-0.316667	0.616585	
С	-4.361075	1.050170	0.570299	
С	-2.991690	1.363998	0.176893	
Н	-5.345056	-0.898198	0.875079	
Н	-5.128589	1.779822	0.785909	
С	-2.459495	2.661566	0.062040	
С	-2.853517	-2.239224	0.203435	
С	-0.603271	4.334308	-0.429109	
С	0.717955	4.219128	-0.787298	
С	1.022787	2.796871	-0.866604	
С	-1.130727	2.983586	-0.286063	
Н	-1.168847	5.243511	-0.282719	
Н	1.418273	5.018447	-0.984020	
С	2.274605	2.250879	-1.216837	
С	0.552979	-2.963176	-0.764952	
С	0.027718	-4.309180	-0.607328	
C	-1.288856	-4.196423	-0.225774	
C	-1.599302	-2.778616	-0.148190	
Н	0.589092	-5.218830	-0.766820	
Н	-1.984689	-4.997958	-0.021977	
С	3.878487	0.334486	-1.690145	

С	3.769195	-1.031409	-1.667744
С	2.398163	-1.348232	-1.274833
С	2.576980	0.880578	-1.311991
Н	4.750040	0.921758	-1.942540
Н	4.534598	-1.758574	-1.898957
С	1.874478	-2.646593	-1.136194
Ċ	-3.380005	3.807014	0.373404
C	-4.202142	4.415966	-0.600810
C	-5.067005	5.484709	-0.323503
C	-5 129821	5 987648	0.987612
C	-4 334220	5 420177	1 998436
C	-3 485530	4 352953	1 672897
Ĥ	-5 674149	5 910973	-1 114931
Н	-5 793756	6 81 53 34	1 220198
Н	-4 371114	5 795220	3 015588
C C	-3 927006	-3 209547	0.605428
C C	-4 086734	-3 633921	1 9//598
C C	-5.074724	-1 538532	2 357906
C C	5 962121	5 060102	1 400186
C C	5 851282	-5.000102	0.0533/1
C C	-5.851282	3 765481	0.0555541
Ч	5 146482	4 826145	3 401342
П Ц	-5.140482	-4.820143	0.609151
С	-0.327980	-3.003711	-0.096131
C	2.000120	-3.193302	-1.393100
C	3.397771	-4.372733	-0.372993
C	4.480031	-3.440943	-0.383294
C C	4.390797	-3.979074	-1.0/0/02
C	5.854587	-3.440043	-2.932887
C II	2.964852	-4.3///1/	-2.6/1/05
H	5.060430	-5.839570	0.240253
H	5.2/5518	-6.806826	-2.063500
H	3.911960	-5.849868	-3.936948
C	3.379422	3.222081	-1.526157
C	4.244117	3.732582	-0.532435
C	5.279758	4.640313	-0.795209
C	5.481637	5.074975	-2.116/19
C	4.651272	4.601407	-3.147053
C	3.627029	3.694887	-2.835649
H	5.909410	4.996591	0.012972
H	4.792176	4.927849	-4.171938
H	6.278939	5.777780	-2.341205
Н	-6.734214	-5.762260	1.701460
Cl	-2.482117	3.653804	3.023910
Cl	-4.160859	3.807435	-2.314657
Cl	2.582751	3.121868	-4.206382
Cl	4.030511	3.210385	1.201812
Cl	2.006942	-3.731250	-4.075826
Cl	3.487428	-3.722637	1.326209
Cl	-4.750973	-3.300227	-2.069222
Cl	-2.966913	-2.990262	3.229281
Н	-0.468871	-0.681871	1.980040
Н	-0.333380	0.967612	1.898534
Ν	0.090376	0.085407	1.592696
С	1.504713	-0.004633	2.086434
Н	2.062119	0.825411	1.641784
Н	1.931586	-0.934770	1.698768

С	1.608461	0.039561	3.624306
Н	1.161291	0.971115	4.000053
Н	1.033281	-0.793120	4.056868
С	3.084975	-0.048468	4.089673
Н	3.659479	0.779254	3.649371
Н	3.541520	-0.977063	3.718420
Si	3.290592	0.000570	5.943423
0	2.581484	1.435894	6.464471
Н	2.259872	1.660170	7.349983
0	2.549285	-1.311832	6.691449
Н	2.983171	-1.956661	7.269957
0	4.901433	-0.113920	6.455416
Н	5.618802	0.528772	6.352744
0	-0.601309	0.103147	-2.535762
С	-1.903697	-0.104021	-3.274567
С	-1.599873	-1.514725	-3.661129
Н	-2.740381	-0.018059	-2.576120
С	-1.996754	0.913602	-4.403924
Н	-1.807361	-2.330444	-2.974939
Н	-0.955563	-1.703293	-4.517591
Н	-1.127871	0.829225	-5.067662
Н	-2.912249	0.755388	-4.991162
Н	-2.017782	1.927821	-3.989051
Ru	-0.294228	-0.004079	-0.554689

2.4. Small Molecules (B3LYP/LANL2DZ)

(All structures shown in this section are singlets unless specified otherwise.)

O₂ (Triplet)

Fig.	S139	O_2	(Trip	let)
8'	~ 10 /	<u> </u>	\P	

E _{SCF}	E _{ZP}	Н	G
-150.314740	-150.311445	-150.308134	-150.331506

propene

Fig. S140 propene

ESCF	Ezp	Н	G
-117.891304	-117.811106	-117.806069	-117.836174

propylene oxide

Fig. S141 propylene oxide

E _{SCF}	E _{ZP}	Н	G
-193.074075	-192.988641	-192.983203	-193.015134

ethylene

Fig. S142 ethylene

ESCF	Ezp	Н	G
-78.578206	-78.526860	-78.522885	-78.549060

ethylene oxide

Fig. S143 ethylene oxide

	E _{SCF}	E _{ZP}	Н	G
-	-153.757542	-153.700573	-153.696408	-153.724766

2,6-dimethylpyridine

Fig. S144 2,6-dimethylpyridine

ESCF	Ezp	Н	G
-326.869243	-326.724918	-326.716117	-326.758339

2,6-dimethylpyridine *N*-oxide

Fig. S145 2,6-dimethylpyridine N-oxide

E _{SCF}	E _{ZP}	Н	G
-402.038435	-401.889319	-401.880186	-401.921747

2,6-dichloropyridine

Fig. S146 2,6-dichloropyridine

ESCF	Ezp	Н	G
-276.913551	-276.844147	-276.836610	-276.876233

2,6-dichloropyridine N-oxide

Fig. S147 2,6-dichloropyridine N-oxide

E _{SCF}	E _{ZP}	Н	G
-352.054051	-351.980895	-351.972468	-352.014043

2-chloropyridine

Fig. S148 2-chloropyridine

ESCF	Ezp	Н	G
-262.577796	-262.498438	-262.492105	-262.528241

2-chloropyridine N-oxide

Fig. S149 2-chloropyridine N-oxide

E _{SCF}	E _{ZP}	Н	G
-337.729224	-337.646024	-337.638824	-337.677018

pyridine

Fig. S150 pyridine

ESCF	Ezp	Н	G
-248.239415	-248.150160	-248.144974	-248.177576

pyridine N-oxide

Fig. S151 pyridine *N*-oxide

[E _{SCF}	E _{ZP}	Н	G
	-323.403187	-323.309974	-323.303963	-323.338723

4-nitroquinoline

Fig. S152 4-nitroquinoline

ESCF	Ezp	Н	G
-606.322250	-606.184258	-606.174073	-606.220041

4-nitroquinoline N-oxide

Fig. S153 4-nitroquinoline N-oxide

E _{SCF}	E _{ZP}	Н	G
-681.491158	-681.348929	-681.337880	-681.385715

2.5. Higher Levels of Theory and Basis Sets Tests

2.5.1 B3LYP/LANL2DZ with Tight Convergence Criteria

O₂ (Triplet)

Fig. S154 O₂ (Triplet)

E _{SCF}	E _{ZP}	Н	G
-150.314740	-150.311443	-150.308132	-150.331504

2,6-dimethylpyridine (Singlet)

Fig. S155 2,6-dimethylpyridine (Singlet)

ESCF	Ezp	Н	G
-326.869253	-326.724866	-326.716101	-326.757958

2,6-dimethylpyridine *N*-oxide (Singlet)

Fig. S156 2,6-dimethylpyridine *N*-oxide (Singlet)

E _{SCF}	E _{ZP}	Н	G
-402.038437	-401.889326	-401.880184	-401.921774

oxo complex with adsorbed Me₂PyO molecule (Triplet)

Fig. S157 oxo complex with adsorbed Me₂PyO molecule (Triplet)

ESCF	Ezp	Н	G
-2746.658262	-2745.718113	-2745.655289	-2745.818217

Fig. S158 $\eta^3\mbox{-}ozone$ complex to peroxo complex (Triplet)

E _{SCF}	E _{ZP}	Н	G	f
-2821.749736	-2820.808876	-2820.744891	-2820.909609	-255

peroxo $\eta^3\mbox{-ozone}$ complex to spiro bisperoxo complex (Triplet)

Fig. S159 peroxo $\eta^3\mbox{-}ozone$ complex to spiro bisperoxo complex (Triplet)

E _{SCF}	E _{ZP}	Н	G	f
-2972.067602	-2971.121520	-2971.054402	-2971.228083	-210

2.5.2 B3LYP/LANL2DZ with PCM

O₂ (Triplet)

Fig. S160 O₂ (Triplet)

E _{SCF}	E _{ZP}	Н	G
-150.314977	-150.311687	-150.308376	-150.331748

2,6-dimethylpyridine (Singlet)

Fig. S161 2,6-dimethylpyridine (Singlet)

ESCF	Ezp	Н	G
-326.874122	-326.729807	-326.721084	-326.762625

2,6-dimethylpyridine *N*-oxide (Singlet)

Fig. S162 2,6-dimethylpyridine *N*-oxide (Singlet)

E _{SCF}	E _{ZP}	Н	G
-402.046771	-401.897803	-401.888637	-401.930286

oxo complex with adsorbed Me₂PyO molecule (Triplet)

Fig. S163 oxo complex with adsorbed Me₂PyO molecule (Triplet)

ESCF	Ezp	Н	G
-2746.685457	-2745.745359	-2745.682819	-2745.844385

Fig.	S164	η^3 -ozone	complex	to peroxo	complex	(Triplet)
\mathcal{C}			1	1	1	· · · ·

E _{SCF}	E _{ZP}	Н	G	f
-2821.777516	-2820.837287	-2820.773240	-2820.937699	-266

peroxo $\eta^3\mbox{-ozone}$ complex to spiro bisperoxo complex (Triplet)

Fig. S165 peroxo $\eta^3\mbox{-}ozone$ complex to spiro bisperoxo complex (Triplet)

E _{SCF}	E _{ZP}	Н	G	f
-2972.096590	-2971.150547	-2971.083683	-2971.255242	-225

2.5.3 B3LYP/Custom Basis Set

O₂ (Triplet)

Fig. S166 O₂ (Triplet)

E _{SCF}	E _{ZP}	Н	G
-150.360532	-150.356817	-150.353510	-150.376803

2,6-dimethylpyridine (Singlet)

Fig. S167 2,6-dimethylpyridine (Singlet)

ESCF	Ezp	Н	G
-326.889109	-326.744760	-326.735974	-326.778016

2,6-dimethylpyridine *N*-oxide (Singlet)

Fig. S168 2,6-dimethylpyridine *N*-oxide (Singlet)

E _{SCF}	E _{ZP}	Н	G
-402.082333	-401.932739	-401.923678	-401.965089

oxo complex with adsorbed Me₂PyO molecule (Triplet)

Fig. S169 oxo complex with adsorbed Me₂PyO molecule (Triplet)

ESCF	Ezp	Н	G
-2746.856025	-2745.915836	-2745.852830	-2746.016972

Fig. S170 $\eta^3\mbox{-}ozone$ complex to peroxo complex (Triplet)

E _{SCF}	E _{ZP}	Н	G	f
-2821.961601	-2821.020573	-2820.956514	-2821.121604	-233

peroxo $\eta^3\mbox{-ozone}$ complex to spiro bisperoxo complex (Triplet)

Fig. S171 peroxo $\eta^3\mbox{-}ozone$ complex to spiro bisperoxo complex (Triplet)

E _{SCF}	E _{ZP}	Н	G	f
-2972.324674	-2971.377757	-2971.310667	-2971.485082	-343

2.5.4 B3LYP/Custom Basis Set with PCM

O₂ (Triplet)

Fig. S172 O₂ (Triplet)

E _{SCF}	E _{ZP}	Н	G
-150.360636	-150.356920	-150.353613	-150.376906

2,6-dimethylpyridine (Singlet)

Fig. S173 2,6-dimethylpyridine (Singlet)

ESCF	Ezp	Н	G
-326.893479	-326.749252	-326.740480	-326.782382

2,6-dimethylpyridine *N*-oxide (Singlet)

Fig. S174 2,6-dimethylpyridine *N*-oxide (Singlet)

E _{SCF}	E _{ZP}	Н	G
-402.090161	-401.940802	-401.931710	-401.973201

oxo complex with adsorbed Me₂PyO molecule (Triplet)

Fig. S175 oxo complex with adsorbed Me₂PyO molecule (Triplet)

ESCF	Ezp	Н	G
-2746.880325	-2745.940640	-2745.877803	-2746.040004

Fig. S176 $\eta^3\mbox{-}ozone$ complex to peroxo complex (Triplet)

E _{SCF}	E _{ZP}	Н	G	f
-2821.984055	-2821.043300	-2820.979346	-2821.143349	-390

peroxo $\eta^3\mbox{-ozone}$ complex to spiro bisperoxo complex (Triplet)

Fig. S177 peroxo $\eta^3\mbox{-}ozone$ complex to spiro bisperoxo complex (Triplet)

E _{SCF}	E _{ZP}	Н	G	f
-2972.350593	-2971.403716	-2971.336943	-2971.508462	-358