Electronic Supplementary Information

Nature of S₂Se₂ σ(4c–6e) at naphthalene 1,8-positions and models, elucidated by QTAIM dual functional analysis

Waro Nakanishi,* Yutaka Tsubomoto and Satoko Hayashi*

Department of Material Science and Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama, 640-8510 Japan E-mail: nakanisi@sys.wakayama-u.ac.jp and hayashi3@sys.wakayama-u.ac.jp

QTAIM Dual Functional Analysis (QTAIM-DFA)

The bond critical point (BCP; *) is an important concept in QTAIM. The BCP of $(\omega, \sigma) = (3, -1)^{[S1]}$ is a point along the bond path (BP) at the interatomic surface, where charge density $\rho(\mathbf{r})$ reaches a minimum. It is donated by $\rho_{\rm b}(\mathbf{r}_{\rm c})$. While the chemical bonds or interactions between A and B are denoted by A–B, which correspond to BPs between A and B in QTAIM, A-*-B emphasizes the presence of BCP (*) in A–B.

The sign of the Laplacian $\rho_b(\mathbf{r}_c)$ ($\nabla^2 \rho_b(\mathbf{r}_c)$) indicates that $\rho_b(\mathbf{r}_c)$ is depleted or concentrated with respect to its surrounding, since $\nabla^2 \rho_b(\mathbf{r}_c)$ is the second derivative of $\rho_b(\mathbf{r}_c)$. $\rho_b(\mathbf{r}_c)$ is locally depleted relative to the average distribution around \mathbf{r}_c if $\nabla^2 \rho_b(\mathbf{r}_c) > 0$, but it is concentrated when $\nabla^2 \rho_b(\mathbf{r}_c) < 0$. Total electron energy densities at BCPs ($H_b(\mathbf{r}_c)$) must be a more appropriate measure for weak interactions on the energy basis.^[S1-S6] $H_b(\mathbf{r}_c)$ are the sum of kinetic energy densities ($G_b(\mathbf{r}_c)$) and potential energy densities ($V_b(\mathbf{r}_c)$) at BCPs, as shown in Eq. (S1). Electrons at BCPs are stabilized when $H_b(\mathbf{r}_c) < 0$, therefore, interactions exhibit the covalent nature in this region, whereas they exhibit no covalency if $H_b(\mathbf{r}_c) > 0$, due to the destabilization of electrons at BCPs under the conditions.^[S1] Eq. (S2) represents the relation between $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$, together with $G_b(\mathbf{r}_c)$ and $V_b(\mathbf{r}_c)$, which is closely related to the virial theorem.

$$H_{\rm b}(\boldsymbol{r}_{\rm c}) = G_{\rm b}(\boldsymbol{r}_{\rm c}) + V_{\rm b}(\boldsymbol{r}_{\rm c}) \tag{S1}$$

$$(\hbar^2/8m)\nabla^2\rho_{\rm b}(\mathbf{r}_{\rm c}) = H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2$$
(S2)

$$=G_{\rm b}(\boldsymbol{r}_{\rm c})+V_{\rm b}(\boldsymbol{r}_{\rm c})/2\tag{S2'}$$

Interactions are classified by the signs of $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$. Interactions in the region of $\nabla^2 \rho_b(\mathbf{r}_c) < 0$ are called shared-shell (SS) interactions and they are closed-shell (CS) interactions for $\nabla^2 \rho_b(\mathbf{r}_c) > 0$. $H_b(\mathbf{r}_c)$ must be negative when $\nabla^2 \rho_b(\mathbf{r}_c) < 0$, since $H_b(\mathbf{r}_c)$ are larger than $(\hbar^2/8m)\nabla^2 \rho_b(\mathbf{r}_c)$ by $V_b(\mathbf{r}_c)/2$ with negative $V_b(\mathbf{r}_c)$ at all BCPs (Eq. (S2)). Consequently, $\nabla^2 \rho_b(\mathbf{r}_c) < 0$ and $H_b(\mathbf{r}_c) < 0$ for the SS interactions. The CS interactions are especially called *pure* CS interactions for $H_b(\mathbf{r}_c) > 0$ and $\nabla^2 \rho_b(\mathbf{r}_c) > 0$, since electrons at BCPs are depleted and destabilized under the conditions.^[S1a] Electrons in the intermediate region between SS and *pure* CS, which belong to CS, are locally depleted but stabilized at BCPs, since $\nabla^2 \rho_b(\mathbf{r}_c) > 0$ but $H_b(\mathbf{r}_c) < 0$.^[S1a] We call the interactions in this region *regular* CS,^[S4,S5] when it is necessary to distinguish from *pure* CS. The role of $\nabla^2 \rho_b(\mathbf{r}_c)$ in the classification can be replaced by $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, since $(\hbar^2/8m)\nabla^2 \rho_b(\mathbf{r}_c) = H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (Eq. (S2)).

We proposed QTAIM-DFA by plotting $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (= $(\hbar^2/8m)\nabla^2\rho_b(\mathbf{r}_c)$),^[S4a] after the proposal of $H_b(\mathbf{r}_c)$ versus $\nabla^2\rho_b(\mathbf{r}_c)$.^[S4b] Both axes in the plot of the former are given in energy unit, therefore, distances on the (x, y) (= $(H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, $H_b(\mathbf{r}_c)$) plane can be expressed in the energy unit, which provides an analytical development. QTAIM-DFA can incorporate the classification of interactions by the signs of $\nabla^2\rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$. Scheme S1 summarizes the QTAIM-DFA treatment. Interactions of *pure* CS appear in the first quadrant, those of *regular* CS in the forth quadrant and SS interactions do in the third quadrant. No interactions appear in the second one.

Scheme S1. QTAIM-DFA: Plot of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ for weak to strong interactions.

In our treatment, data for perturbed structures around fully optimized structures are also employed for the plots, together with the fully optimized ones (see Figure S1).^[S4-S6] We proposed the concept of the "dynamic nature of interaction" originated from the perturbed structures. The behavior of interactions at the fully optimized structures corresponds to "the static nature of interactions", whereas that containing perturbed structures exhibit the "dynamic nature of interaction" as explained below. The method to generate the perturbed structures is discussed later. Plots of $H_{\rm b}(\mathbf{r}_{\rm c})$ versus $H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2$ are analyzed employing the polar coordinate (R, θ) representation with (θ_p , κ_p) parameters.^[S4a,S5,S6] Figure S1 explains the treatment. R in (R, θ) is defined by Eq. (S3) and given in the energy unit. R corresponds to the energy for an interaction at BCP. The plots show a spiral stream, as a whole. θ in (R, θ) defined by Eq. (S4), measured from the y-axis, controls the spiral stream of the plot. Each plot for an interaction shows a specific curve, which provides important information of the interaction (see Figure S1). The curve is expressed by θ_p and κ_p . While θ_p , defined by Eq. (S5) and measured from the y-direction, corresponds to the tangent line of a plot, where θ_p is calculated employing data of the perturbed structures with a fully-optimized structure and κ_p is the curvature of the plot (Eq. (S6)). While (R, θ) correspond to the static nature, $(\theta_{\rm p}, \kappa_{\rm p})$ represent the dynamic nature of interactions. We call (R, θ) and $(\theta_{\rm p}, \kappa_{\rm p})$ QTAIM-DFA parameters, whereas $\rho_{\rm b}(\mathbf{r}_{\rm c})$, $\nabla^2 \rho_{\rm b}(\mathbf{r}_{\rm c})$, $G_{\rm b}(\mathbf{r}_{\rm c})$, $H_{\rm b}(\mathbf{r}_{\rm c})$ and $H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2$ belong to QTAIM functions. $k_{\rm b}(\mathbf{r}_{\rm c})$, defined by Eq. (S7), is a QTAIM function but it will be treated as if it were a QTAIM-DFA parameter, if suitable.

Figure S1. Polar (R, θ) coordinate representation of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, with (θ_p, κ_p) parameters.

$R = (x^2 + y^2)^{1/2}$	(S3)
$\theta = 90^{\circ} - \tan^{-1}\left(\frac{y}{x}\right)$	(S4)
$\theta_{\rm p} = 90^{\rm o} - \tan^{-1} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)$	(\$5)
$\kappa_{\rm p} = {\rm d}^2 y/{\rm d}x^2 / [1 + ({\rm d}y/{\rm d}x)^2]^{3/2}$	(S6)
$k_{\rm b}(\boldsymbol{r}_{\rm c}) = V_{\rm b}(\boldsymbol{r}_{\rm c})/G_{\rm b}(\boldsymbol{r}_{\rm c})$	(S7)
where $(x, y) = (H_{\rm b}(\boldsymbol{r}_{\rm c}) - V_{\rm b}(\boldsymbol{r}_{\rm c})/2, H_{\rm b}(\boldsymbol{r}_{\rm c}))$	

Criteria for Classification of Interactions: Behavior of Typical Interactions Elucidated by QTAIM-DFA

 $H_{\rm b}(\mathbf{r}_{\rm c})$ are plotted versus $H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2$ for typical interactions in vdW (van der Waals interactions), HB (hydrogen bonds), CT-MC (molecular complexes through charge transfer), X₃⁻ (trihalide ions), CT-TBP (trigonal bipyramidal adducts through charge-transfer), Cov-w (weak covalent bonds) and Cov-s (strong covalent bonds).^[S4-S6] Rough criteria are obtained, after the analysis of the plots for the typical interactions according to Eqs. (S3)–(S7), by applying QTAIM-DFA. Scheme S2 shows the rough criteria, which are accomplished by the θ and $\theta_{\rm p}$ values, together with the values of $k_{\rm b}(\mathbf{r}_{\rm c})$. The criteria will be employed to discuss the nature of interactions in question, as a reference.

Scheme S2. Rough classification of interactions by θ and θ_p , together with $k_b(\mathbf{r}_c) (= V_b(\mathbf{r}_c)/G_b(\mathbf{r}_c))$.

Figure S2. ¹H NMR spectrum of 4.

Figure S3. ¹³C NMR spectrum of 4.

Figure S4. ⁷⁷Se NMR spectrum of 4.

Table S1. Structural parameters evaluated for 1–4 with MP2/BSS-A and MP2/BS-B, together with the observed values for 4 and I.^[a,b]

Species (^A E, ^B E)	$r_{o}(^{A}E, ^{A}E)$	$r_{o}(^{A}E, ^{B}E)$	$\Delta r_{o}(^{A}E, ^{B}E)^{[c]}$	$\angle C_1^A E^A E$	$\angle C_8^B E C_{11}$	$\angle^{B}E^{A}E^{A}E$	${\pmb \phi_1}^{[d]}$	$\phi_2^{[e]}$
(symmetry)	(Å)	(Å)	(Å)	(°)	(°)	(°)	(°)	(°)
MP2/BSS-A								
$1(S, S)(C_1)$	2.0559	2.9418	-0.66	104.9	99.6	171.4	83.7	75.5
2 (S, Se) (C ₂)	2.0603	3.0255	-0.67	104.6	97.0	170.2	85.7	69.9
3 (Se, S) (<i>C</i> ₂)	2.3440	2.9556	-0.74	101.9	99.4	177.8	83.3	73.7
4 (Se, Se) (<i>C</i> ₂)	2.3532	3.0353	-0.76	101.6	96.6	176.9	85.1	68.3
MP2/BSS-B								
$1(S, S)(C_1)$	2.0937	2.9419	-0.66	104.7	99.5	171.7	83.9	74.9
2 (S, Se) (C ₂)	2.0990	3.0293	-0.67	104.3	96.8	170.5	86.0	69.5
3 (Se, S) (<i>C</i> ₂)	2.3744	2.9682	-0.73	101.9	99.3	178.0	83.4	73.3
4 (Se, Se) (<i>C</i> ₂)	2.3839	3.0540	-0.75	101.6	96.5	177.1	84.9	67.9
Observed Value								
4 (Se, Se) ^[f]	2.3864(4)	3.030	-0.77	102.64(6)	96.98(9) ^[g]	173.3	79.1	$78.7^{[h]}$
I (S, S)	2.055(2)	2.988(2)	-0.61	104.9 ^[i]	102.8 ^[g,h]	167.3 ^[i]	-89.0	$76.4^{[h,i]}$
I (S, Se)	2.0706	3.0560 ^[i]	-0.64	104.2 ^[i]	$99.2^{[g,h]}$	168.1 ^[i]	-81.3	$70.8^{[h,i]}$
I (Se, S)	2.3561	2.9809 ^[i]	-0.72	101.8 ^[i]	102.3 ^[g,h]	$174.4^{[i]}$	-91.5	$76.6^{[h,i]}$
I (Se, Se)	2.365(1)	$3.053(1)^{[i]}$	-0.75	102.4 ^[i]	100.3 ^[g,h]	173.8 ^[i]	91.4(4)	73.1 ^[h,i]

[a] BSS-A: the 6-311+G(3df) basis sets being employed for S and Se with the 6-311G(d) basis sets for C and H. [b] BSS-B: the 6-311+G(3d) basis sets being employed for S and Se with the 6-311G(d) basis sets for C and H. [c] $\Delta r_{o}(^{A}E, ^{B}E) = r_{o}(^{A}E, ^{B}E) - \Sigma r_{vdW}(^{A}E, ^{B}E)$, where $r_{vdW}(S) = 1.80$ Å and $r_{vdW}(Se) = 1.90$ Å (ref. 37 in the text). [d] $\phi_{1} = \phi(C_{1}^{A}E^{A}EC_{1})$. [e] $\phi_{2} = \phi(C_{9}C_{8}^{B}EC_{1})$. [f] Prepared and measured in this work. [g] $\angle C_{8}^{B}EC_{i}$. [h] $\phi_{2} = \phi(C_{9}C_{8}^{B}EC_{i})$. [g] Averaged value.

Species	$r_{o}(^{A}E, ^{A}E)$	$r_{\rm o}(^{\rm A}{\rm E}, {}^{\rm B}{\rm E})$	$\Lambda r_{o}(^{A}E, ^{B}E)^{[t]}$	$^{\text{D}} \angle \mathbf{A}^{\text{B}} \mathbf{E}^{\text{A}} \mathbf{E}^{[\mathfrak{c}]} \angle$	∠ ^B E ^A E ^A E	$\phi_1^{[d]}$	$\phi_2^{[e]}$	ΔE_{ES}	ΔE_{ZP}	
$(^{A}E, ^{B}E)$	(Å)	(Å)	(Å)	(°)	(°)	(°)	(°)	$(kJ mol^{-1})$	$(kJ mol^{-1})$	
model A ((C_2)									
(S, S)	2.0590	3.5251	-0.07	74.2	167.9	-90.5	-128.8	-21.7	-15.9	
(S, Se)	2.0601	3.6334	-0.07	74.1	167.9	-90.5	-129.4	-21.3	-16.1	
(Se, S)	2.3408	3.5791	-0.12	80.7	169.2	-90.3	-131.3	-21.6	-16.4	
(Se, Se)	2.3425	3.6894	-0.11	80.7	169.0	-90.3	-131.8	-21.3	-16.6	
model B (model B (C_2)									
(S, S)	2.0332	3.6907	0.09	55.1	171.0	-84.7	-116.9	-24.2	-18.4	
(S, Se)	2.0336	3.7981	0.10	54.7	170.6	-84.8	-116.5	-24.4	-19.4	
(Se, S)	2.3004	3.7302	0.03	60.6	176.1	-85.4	-122.1	-25.0	-19.2	
(Se, Se)	2.3011	3.8281	0.03	58.5	175.7	-85.4	-120.9	-25.5	-20.6	
model C ((C_2)									
(S, S)	2.0695	3.2537	-0.35	85.4	173.7	-90.5	-118.3	-41.4	-36.7	
(S, Se)	2.0720	3.3302	-0.37	83.7	175.5	-90.4	-130.8	-43.2	-39.0	
(Se, S)	2.3412	3.2707	-0.43	87.9	174.4	-90.4	-120.4	-45.0	-41.0	
(Se, Se)	2.3444	3.3654	-0.43	86.9	172.0	-90.4	-103.6	-46.2	-42.4	
model D ((C_2)									
(S, S)	2.0407	3.4434	-0.16	83.6	167.0	-84.4	-107.4	-41.6	-37.8	
(S, Se)	2.0416	3.5215	-0.18	80.2	167.0	-84.4	-114.7	-43.4	-39.9	
(Se, S)	2.3123	3.4081	-0.29	87.0	169.5	-84.9	-94.7	-46.5	-42.9	
(Se, Se)	2.3127	3.5190	-0.28	82.5	164.4	-84.6	-82.6	-48.2	-45.0	

Table S2. Structural parameters evaluated for models A–D with MP2/BSS-C.^[a]

[a] BSS-C: the 6-311+G(3df) basis sets being employed for S and Se with the 6-311G(d,p) basis sets for C and H. [b] $\Delta r_o(^{A}E, ^{B}E) = r_o(^{A}E, ^{B}E) - \Sigma r_{vdW}(^{A}E, ^{B}E)$, where $r_{vdW}(S) = 1.80$ Å and $r_{vdW}(Se) = 1.90$ Å (ref. 37 in the text). [c] A = H or C_{Me}. [c] $\phi_1 = \phi(H^{A}E^{A}EH \text{ or } C_{Me}^{A}E^{A}EC_{Me})$. [d] $\phi_2 = \phi(H^{B}E^{A}EH, H^{B}E^{A}EC_{Me}, C_{Me}^{B}E^{A}EH, or C_{Me}^{B}E^{A}EC_{Me})$.

Table S3. Results of NBO analysis for the ^AE---^BE interactions in **1–4** with M06-2X/BSS-A//MP2/BSS-A and models **A–D** with MP2/BSS-C//MP2/BSS-C.^[a]

Compound	$E(2)^{[b,c]}$	$E(2)^{[b,c]}$	$[E(i) - E(j)]^{[d]}$	$F(i,j)^{[e]}$	Compound	$E(2)^{[b,c]}$	$E(2)^{[b,c]}$	$[E(i) - E(j)]^{[d]}$	$F(i,j)^{[e]}$
$(^{A}E, ^{B}E)$	([f])	([g])	(au)	(au)	$(^{A}E, ^{B}E)$	([f])	([g])	(au)	(au)
1 (S, S)	8.83	36.9	0.40	0.053	2 (S, Se)	9.40	39.3	0.38	0.054
3 (Se, S)	15.19	63.6	0.35	0.066	4 (Se, Se)	16.97	71.0	0.33	0.067
A(S,S)	1.88	7.9	0.43	0.025	A (S, Se)	1.96	8.2	0.41	0.025
A(Se, S)	2.99	12.5	0.37	0.030	A (Se, Se)	3.12	13.1	0.36	0.030
B (S, S)	0.52	2.2	0.45	0.014	B (Se, S)	0.51	2.1	0.44	0.013
B (Se, S)	1.02	4.3	0.40	0.018	B (Se, Se)	1.01	4.2	0.39	0.018
$\mathbf{C}(\mathbf{S},\mathbf{S})$	4.30	18.0	0.39	0.037	C (Se, S)	5.01	21.0	0.38	0.039
C (Se, S)	6.73	28.2	0.34	0.043	C (Se, Se)	7.32	30.6	0.33	0.044
D (S, S)	1.88	7.9	0.41	0.025	D (Se, S)	2.15	9.0	0.39	0.026
\mathbf{D} (Se. S)	3.68	15.4	0.36	0.032	D (Se, Se)	3.61	15.1	0.34	0.031

[a] M06-2X/BSS-A//MP2/BSS-A was applied to **1–4**, since the calculations stopped before the end of the evaluations, if MP/BSS-A//MP2/BSS-A was employed. [b] Second-order perturbation energy. [c] Only one side of energy is shown. [d] Donor orbital of NBO(*i*) is $n_p(^{A}E)$ and acceptor orbital of NBO (*j*) corresponds to $\sigma^*(^{A}E-^{A}E)$. [e] Fock matrix. [f] In kcal mol⁻¹. [g] In kJ mol⁻¹.

Figure S5. Plots of ΔE_{ES} and ΔE_{ZP} for models **A–D**.

Figure S6. Plot of 2E(2) versus $\Delta E_{\rm ES}$ for models **A**–**D**.

Figure S7. Molecular graphs for **2**, **3** and models **A** (S, S)–**D** (S, S), evaluated with MP2/6-311G(3d). BCPs are shown by red dots (\bullet), RCPs by yellow dots (\bullet) and CCPs by green dots (\bullet), together with BPs by pink lines (- \bullet -). Carbon atoms are drawn in black (\bullet), hydrogen atoms in gray (\bullet), sulfur atoms in yellow (\bullet).

Figure S8. Negative Laplacians for 1–4 and models A (Se, Se)–D (Se, Se) drawn with MP2/6-311G(d), similarly to the case of Figure 4 in the text. Blue and red lines correspond to the positive and negative values, respectively.

Figure S9. Trajectory plots for 1–4 and models A–D (Se, Se) drawn with MP2/6-311G(d), similarly to the case of Figure 4 in the text. Colors and marks are the same as those in Figure 4.

Table S4. r_{BP} and R_{SL} values for the ^BE ---^AE-^AE---^BE interactions in compounds 1–4 with MP2/BSS-A and models of A–D with MP2/BSS-C.^[a]

species	$R_{\rm SL}(^{\rm B}{\rm E}, ^{\rm A}{\rm E})$	$R_{\rm SL}(^{\rm A}{\rm E}, ^{\rm A}{\rm E})$	$r_{\rm BP}(^{\rm B}{\rm E}, {}^{\rm A}{\rm E})$	$r_{\rm BP}(^{\rm A}{\rm E}, {}^{\rm A}{\rm E})$	$\Delta r_{\rm BP}(^{\rm B}{\rm E}, {}^{\rm A}{\rm E})^{[b]}$	$\Delta r_{\rm BP}(^{\rm A}{\rm E}, ^{\rm A}{\rm E})^{[\rm c]}$
$^{\mathrm{B}}\mathrm{E} ^{\mathrm{A}}\mathrm{E} - ^{\mathrm{A}}\mathrm{E} ^{\mathrm{B}}\mathrm{E}$	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)
compounds 1–4						
$^{B}S-*-^{A}S-*-^{A}S-*-^{B}S$ in 1	2.9418	2.0559	2.9577	2.0576	0.0159	0.0017
$^{B}Se-*-^{A}S-*-^{A}S-*-^{B}Se \text{ in } 2$	3.0255	2.0603	3.0396	2.0621	0.0141	0.0018
$^{B}S-*-^{A}Se-*-^{A}Se-*-^{B}S$ in 3	2.9556	2.3440	2.9625	2.3457	0.0069	0.0017
^B Se-*- ^A Se-*- ^A Se-*- ^B Se in 4	4 3.0353	2.3532	3.0408	2.3549	0.0055	0.0017
model A						
^B S-*- ^A S-*- ^A S-*- ^B S	3.5251	2.0590	3.5357	2.0607	0.0106	0.0017
^B Se-*- ^A S-*- ^A S-*- ^B Se	3.6334	2.0601	3.6404	2.0618	0.0070	0.0017
^B S-*- ^A Se-*- ^A Se-*- ^B S	3.5791	2.3408	3.5880	2.3415	0.0089	0.0007
^B Se-*- ^A Se-*- ^A Se-*- ^B Se	3.6894	2.3425	3.6949	2.3432	0.0055	0.0007
model B						
^B S-*- ^A S-*- ^A S-*- ^B S	3.6907	2.0332	3.7386	2.0342	0.0479	0.0010
^B Se-*- ^A S-*- ^A S-*- ^B Se	3.7981	2.0336	3.8191	2.0347	0.0210	0.0011
$^{B}S-*-^{A}Se-*-^{A}Se-*-^{B}S$	3.7302	2.3004	3.7388	2.3009	0.0086	0.0005
^B Se-*- ^A Se-*- ^A Se-*- ^B Se	3.8281	2.3011	3.8356	2.3015	0.0075	0.0004
model C						
${}^{B}S-*-{}^{A}S-*-{}^{A}S-*-{}^{B}S$	3.2537	2.0695	3.2705	2.0712	0.0168	0.0017
^B Se-*- ^A S-*- ^A S-*- ^B Se	3.3302	2.0720	3.3448	2.0737	0.0146	0.0017
^B S-*- ^A Se-*- ^A Se-*- ^B S	3.2707	2.3412	3.2788	2.3418	0.0081	0.0006
^B Se-*- ^A Se-*- ^A Se-*- ^B Se	3.3654	2.3444	3.3719	2.3450	0.0065	0.0006
model D						
^B S-*- ^A S-*- ^A S-*- ^B S	3.4434	2.0407	3.4649	2.0418	0.0215	0.0011
^B Se-*- ^A S-*- ^A S-*- ^B Se	3.5215	2.0416	3.5391	2.0427	0.0176	0.0011
^B S-*- ^A Se-*- ^A Se-*- ^B S	3.4081	2.3123	3.4192	2.3127	0.0111	0.0004
^B Se-*- ^A Se-*- ^A Se-*- ^B Se	3.5190	2.3127	3.5286	2.3132	0.0096	0.0005

[a] BSS-A: the 6-311+G(3df) basis sets being employed for S and Se with the 6-311G(d) basis sets for C and H. BSS-C: the 6-311+G(3df) basis sets being employed for S and Se with the 6-311G(d,p) basis sets for C and H. [b] $\Delta r_{\rm BP}(^{\rm B}E, ^{\rm A}E) = \Delta r_{\rm BP}(^{\rm B}E, ^{\rm A}E) - R_{\rm SL}(^{\rm B}E, ^{\rm A}E)$. [c] $\Delta r_{\rm BP}(^{\rm A}E, ^{\rm A}E) = \Delta r_{\rm BP}(^{\rm A}E, ^{\rm A}E)$.

Figure S10. Plots of r_{BP} versus R_{SL} for the interactions in models **A**–**D**. Correlation is very good, which are shown in the figure.

Table S5. AIM functions and parameters evaluated for ${}^{A}E$ -*- ${}^{A}E$ and ${}^{A}E$ -*- ${}^{B}E$ at BCPs of models A–D with MP2/BSS-C.^[a]

M. 1.1	Testa en atta e	- (-)	$\nabla^2 = (\pi)^{[b]}$	$\mathbf{H}(\mathbf{u})$	1 ()[¢]	()[d]	1 [e]	ת	0	0	
$(^{A}E ^{B}E)$	$(^{A}E_{-}*_{-}^{B}E)$	$\rho_{\rm b}(r_{\rm c})$	$c \vee \rho_{\rm b}(\mathbf{r}_{\rm c})^{\rm er}$	$H_{\rm b}(\mathbf{r}_{\rm c})$	$K_{\rm b}(\mathbf{r}_{\rm c})^{\rm eff}$	$V(n)^{r}$	\mathcal{K}_{f}	(211)	(°)	$\theta_{\rm p}$	$K_{\rm p}$
(L, L) model A	$(L^{-*-} L)$ $\cdot H_{2}^{B} F_{}^{A} F(H).$	$(H)^{A}$ F-	(au)	(au)		(cm)	([1])	(au)	0	()	(au)
(S, S)	$(^{A}S_{-*}^{-A}S)$	0 148	0 -0.0178	-0 0890	-2 6636	527 5 (14)	4 3230	0.0910	191 3	1977	0.4
(\mathbf{S}, \mathbf{S})	$(^{A}S_{-*}^{-A}S_{e})$	0.140	6 -0.0176	-0.0090	-2.0050	527.5(14) 525.2(14)	4 2905	0.0916	191.5	197.7	0.4
(S, SC)	$(^{A}Se_{*}^{A}S)$	0.147	4 -0.0068	-0.0000	-2.0500	296.6(13)	3 3845	0.0200	187.9	197.7	0.4
(Se, Se)	$(^{A}Se_{-*}^{A}Se)$	0.104	1 -0.0067	-0.0494	-2.3031	295.0(13)	3 3969	0.0496	187.8	191.4	0.3
(S, S)	$(^{A}S-*-^{B}S)$	0.008	1 0.0031	0.0009	-0.839	295.0 (15) 75.4 (7)	0.032	0.0032	74.5	92.7	163
(\mathbf{S}, \mathbf{S})	$(^{A}S-*-^{B}Se)$	0.000	7 0.0028	0.0009	-0.831	61 2 (6)	0.016	0.0032	73.9	87.8	134
(Se S)	$(^{A}Se-*-^{B}S)$	0.008	5 0.0030	0.0009	-0.829	59.6(7)	0.062	0.002	73.7	91.2	238
(Se, Se)	$(^{A}Se-*-^{B}Se)$	0.000	2 0.0027	0.0009	-0.823	455(7)	0.053	0.0028	73.2	86.9	230
(50, 50)	(50 - 50)	0.000	2 0.0027	0.0000	0.025	15.5 (7)	0.025	0.0020	73.2	00.9	211
model B	model B : $H_2^B E_{}^A E(Me) - (Me)^A E_{}^B E H_2(C_2)$										
(S, S)	$(^{A}S-*-^{A}S)$	0.155	8 -0.0199	-0.0986	-2.6752	532.5 (18)	2.7540	0.1006	191.4	197.6	0.3
(S, Se)	(^A S-*- ^A Se)	0.155	7 -0.0197	-0.0984	-2.6696	531.7 (18)	2.7526	0.1003	191.3	197.6	0.4
(Se, S)	(^A Se-*- ^A S)	0.111	0 -0.0066	-0.0546	-2.3203	310.7 (18)	2.6416	0.0550	186.9	190.1	0.2
(Se, Se)	(^A Se-*- ^A Se)	0.110	8 -0.0066	-0.0544	-2.3176	310.1 (18)	2.7050	0.0548	186.9	190.2	0.2
(S, S)	$(^{A}S-*-^{B}S)$	0.006	4 0.0027	0.0010	-0.766	73.0 (8)	0.033	0.0029	69.2	83.1	61.6
(S, Se)	$(^{A}S-*-^{B}Se)$	0.006	0 0.0025	0.0010	-0.754	30.6 (3)	0.006	0.0026	68.4	80.1	735
(Se, S)	$(^{A}Se-*-^{B}S)$	0.006	5 0.0025	0.0009	-0.777	64.8 (6)	0.044	0.0027	70.0	86.9	228
(Se, Se)	(^A Se-*- ^B Se)	0.006	3 0.0023	0.0009	-0.770	50.6 (6)	0.021	0.0025	69.5	88.0	115
110			Brand	~ \							
model C	$: Me_2^{B}E ^{A}E(H)$.)-(H)^E	$E = E Me_2 (C$	² 2)	0 (00)	500 0 (20)	0.544	0.0070	100.0	1055	<u> </u>
(S, S)	(^A S-*- ^A S)	0.145	5 -0.0166	-0.0858	-2.6304	509.0 (20)	3.5641	0.08/3	190.9	197.7	0.4
(S, Se)	$(^{A}S-*-^{A}Se)$	0.144	9 -0.0163	-0.0850	-2.6201	503.3 (20)	3.5247	0.0865	190.8	197.7	0.4
(Se, S)	$(^{A}Se-*-^{A}S)$	0.103	8 -0.0057	-0.0481	-2.3069	288.5 (19)	2.8836	0.0485	186.7	190.8	0.3
(Se, Se)	$(^{A}Se-*-^{A}Se)$	0.103	2 -0.0055	-0.0476	-2.2976	284.7 (19)	3.1112	0.0479	186.5	190.9	0.3
(S, S)	$(^{A}S-*-^{B}S)$	0.014	5 0.0047	0.0003	-0.971	90.5 (8)	0.042	0.0047	86.7	114.5	148
(S, Se)	(^A S-*- ^B Se)	0.014	4 0.0044	0.0003	-0.963	76.0 (8)	0.037	0.0044	86.0	113.8	207
(Se, S)	(^A Se-*- ^B S)	0.016	1 0.0048	0.0001	-0.985	70.9 (8)	0.038	0.0048	88.3	121.8	175
(Se, Se)	(^A Se-*- ^D Se)	0.015	5 0.0043	0.0002	-0.974	55.5 (7)	0.049	0.0043	87.1	121.2	311
model D	· Mea ^B F ^A F(M	le)-(Me) ^A F ^B FMe	C_{2}							
(S, S)	$(^{A}S-*-^{B}S)$	0.153	9 -0.0190	-0.0959	-2 6534	521 9 (24)	2 7080	0 0978	191 2	197.6	04
(\mathbf{S}, \mathbf{S})	$(^{A}S-*-^{B}Se)$	0.153	6 -0.0188	-0.0955	-2 6485	519 8 (24)	2.7000	0.0974	191.2	197.6	0.1
(S, SC)	$(^{A}Se-*-^{B}S)$	0.100	1 -0.0061	-0.0527	-2 3036	3014(24)	2.6243	0.0531	186.6	190.3	0.1
(Se. Se)	$(^{A}Se-*-^{B}Se)$	0.109	9 _0 0060	-0.0527	-2.2020	300 7 (24)	2.0145	0.0528	186.6	190.5	0.2
(50, 50)	$(^{A}S-*-^{B}S)$	0.100	6 0.0036	0.0006	-0.909	81 9 (10)	0.020	0.0037	80.5	103.4	170
(\mathbf{S}, \mathbf{S})	$(^{A}S_{-*}^{B}S_{e})$	0.010	5 0.0030	0.0000	-0.906	58 9 (7)	0.020	0.0035	80.2	100.0	247
(Se S)	$(^{A}Se_{*}^{B}S)$	0.010	8 0.0034	0.0005	-0.935	69 1 (8)	0.017	0.0033	83.0	111 7	277 256
(Se, Se)	$(^{A}Se_{*}^{B}Se)$	0.012	1 0.0040	0.0005	-0.935	495(7)	0.017	0.0040	82.0	106.0	230
$(\mathbf{b}\mathbf{c},\mathbf{b}\mathbf{c})$		0.012	1 0.0050	0.0003	-0.723	т <i>л.э</i> (7)	0.024	0.0050	04.1	100.0	<u> ム</u> マノ

[a] BSS-C: the 6-311+G(3df) basis sets being employed for S and Se with the 6-311G(d,p) basis sets for C and H. [b] $c\nabla^2 \rho_b(\mathbf{r}_c) = H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, where $c = \hbar^2/8m$. [c] $k_b(\mathbf{r}_c) = V_b(\mathbf{r}_c)/G_b(\mathbf{r}_c)$. [d] Corresponding to the interaction in question. [e] Force constant for v. [f] mdyn Å⁻¹.

models	θ	$ heta_{ m p}$	R	classification	models	θ	$ heta_{ m p}$	R	classification
$(^{A}E-*-^{B}E)$	(°)	(°)	(au)	/character	$(^{A}E-*-^{B}E)$	(°)	(°)	(au)	/character
$A(^{A}S-*-^{B}S)$	74.5	92.7	0.0032	<i>p</i> -CS/ <i>t</i> -HB	$\mathbf{A} (^{A}S - * - ^{B}Se)$	73.9	87.8	0.0029	<i>p</i> -CS/vdW
$A(^{A}Se-*-^{B}S)$	73.7	91.2	0.0031	<i>p</i> -CS/ <i>t</i> -HB	$A (^{A}Se - * - ^{B}Se)$	73.2	86.9	0.0028	<i>p</i> -CS/vdW
$\mathbf{B}(^{A}S-*-^{B}S)$	69.2	83.1	0.0029	<i>p</i> -CS/vdW	\mathbf{B} (^A S-*- ^B Se)	68.4	80.1	0.0026	<i>p</i> -CS/vdW
\mathbf{B} (^A Se-*- ^B S)	70.0	86.9	0.0027	<i>p</i> -CS/vdW	\mathbf{B} (^A Se-*- ^B Se)	69.5	88.0	0.0025	<i>p</i> -CS/vdW
$C(^{A}S-*-^{B}S)$	86.7	114.5	0.0047	p-CS/ t -HB	$C (^{A}S - * - ^{B}Se)$	86.0	113.8	0.0044	p-CS/ t -HB
$C(^{A}Se-*-^{B}S)$	88.3	121.8	0.0048	p-CS/ t -HB	$C (^{A}Se-*-^{B}Se)$	87.1	121.2	0.0043	p-CS/ t -HB ^[c]
$\mathbf{D} (^{A}S - * - ^{B}S)$	80.5	103.4	0.0037	p-CS/ t -HB	$\mathbf{D} (^{A}S - * - ^{B}Se)$	80.2	100.0	0.0035	p-CS/ t -HB ^[c]
$\mathbf{D} (^{A}Se-*-^{B}S)$	83.0	111.7	0.0040	p-CS/ t -HB	\mathbf{D} (^A Se-*- ^B Se)	82.1	106.0	0.0036	p-CS/ t -HB ^[c]

Table S6. Classification and characterization of the chalcogen-chalcogen interactions in models **A–D** by θ , θ_p and *R* values, evaluated with MP2/BSS-C.^[a,b]

[a] 0.045 au < R < 0.090 au for ^AE-*-^AE and 0.007 au < R < 0.008 au for ^AE-*-^BE. The values are much less than 0.15 au for BSS-A; the 6-311+G(3df) basis set for O, S and Se with the 6-311+G(d,p) basis set for C and H. [b] Data are given at BCP of the interaction in question. [c] *Typical*-HB nature with covalency.

References

- [S1] (a) Atoms in Molecules. A Quantum Theory: eds. R. F. W. Bader, Oxford University Press, Oxford, UK, 1990; (b) C. F. Matta, R. J. Boyd, An Introduction to the Quantum Theory of Atoms in Molecules in The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design: eds. C. F. Matta, R. J. Boyd, WILEY-VCH, Weinheim, Germany, 2007, Chapter 1.
- [S2] (a) R. F. W. Bader, T. S. Slee. D. Cremer, E. Kraka, J. Am. Chem. Soc. 1983, 105, 5061–5068; (b)
 R. F. W. Bader, Chem. Rev. 1991, 91, 893–926; (c) R. F. W. Bader, J. Phys. Chem. A 1998, 102, 7314–7323; (d) F. Biegler-König, R. F. W. Bader, T. H. Tang, J. Comput. Chem. 1982, 3, 317–328; (e) R. F. W. Bader, Acc. Chem. Res. 1985, 18, 9–15; (f) T. H. Tang, R. F. W. Bader, P. MacDougall, Inorg. Chem. 1985, 24, 2047–2053; (g) F. Biegler-König, J. Schönbohm, D. Bayles, J. Comput. Chem. 2001, 22, 545–559; (h) F. Biegler-König, J. Schönbohm, J. Comput. Chem. 2002, 23, 1489–1494.
- [S3] W. Nakanishi, T. Nakamoto, S. Hayashi, T. Sasamori, N. Tokitoh, Chem. Eur. J. 2007, 13, 255– 268.
- [S4] (a) W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A 2009, 113, 10050–10057; (b) W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A 2008, 112, 13593–13599.
- [S5] W. Nakanishi, S. Hayashi, Curr. Org. Chem. 2010, 14, 181–197.
- [S6] (a) W. Nakanishi, S. Hayashi, J. Phys. Chem. A 2010, 114, 7423–7430; (b) W. Nakanishi, S. Hayashi, K. Matsuiwa, M. Kitamoto, Bull. Chem. Soc. Jpn 2012, 85, 1293–1305.
- [S7] W. Grimme, J. Wortmann, D. Frowein, J. Lex, G. Chen, R. Gleiter, J. Chem. Soc., Perkin Trans. 2 1998, 1893–1900.
- [S8] C.-T. Lin, N.-J. Wang, Y.-L. Yeh, T.-C. Chou, Tetrahedron, **1995**, *51*, 2907–2928.

Optimized structures given by Cartesian coordinates

The structures were optimized employing the Gaussian 09 programs. Several types of basis sets were examined to search the suitable methods for the purpose. The Møller-Plesset second order energy correlation (MP2) level is applied to the calculations. The DFT level of M06-2X is also employed to examine the suitable methods.

MP2/BSS-A				
Compound	1			
Symmetry	C_1			
energy	MP2 = -2437.526394	43 au		
Standard orienta	ation			
6	0	-4.127475	-0.446699	-0.562813
6	0	-3.261563	0.446210	0.155653
6	0	-3.894628	1.330759	1.112384
6	0	-5.311114	1.426871	1.165641
6	0	-6.112460	0.619079	0.385951
6	0	-5.512524	-0.324238	-0.472418
6	0	-1.823280	0.490105	0.064571
6	0	-1.100721	1.295331	0.943123
6	0	-1.738701	2.119346	1.891473
6	0	-3.114891	2.172528	1.946843
1	0	-5.754795	2.128941	1.869386
1	0	-7.195462	0.703132	0.430296
1	0	-6.127132	-1.015142	-1.044505
1	0	-0.017575	1.314405	0.877338
1	0	-1.133277	2.739876	2.548236
1	0	-3.620936	2.829691	2.651281
16	0	-3.529789	-1.761690	-1.587177
16	0	-0.947338	-0.399005	-1.229531
6	0	4.127482	0.446680	-0.562810
6	0	3.261557	-0.446211	0.155663
6	0	3.894608	-1.330768	1.112394
6	0	5.311093	-1.426907	1.165646
6	0	6.112450	-0.619132	0.385949
6	0	5.512529	0.324193	-0.472420
6	0	1.823273	-0.490080	0.064584
6	0	1.100701	-1.295285	0.943144
6	0	1.738669	-2.119308	1.891496
6	0	3.114858	-2.172518	1.946861
1	0	5.754763	-2.128982	1.869392
1	0	7.195451	-0.703206	0.430291
1	0	6.127147	1.015085	-1.044511
1	0	0.017554	-1.314337	0.877366
1	0	1.133234	-2.739821	2.548266
1	0	3.620892	-2.829688	2.651299
16	0	3.529813	1.761682	-1.587169
16	0	0.947344	0.399033	-1.229525
6	0	3.030908	2.940211	-0.306038
1	0	3.879919	3.176951	0.338013
1	0	2.702306	3.841524	-0.829624
1	0	2.199389	2.543565	0.280301
6	0	-3.030856	-2.940213	-0.306052
1	0	-3.879857	-3.176960	0.338009
1	0	-2.702255	-3.841524	-0.829643
1	0	-2.199332	-2.543562	0.280275

MP2/BSS-A

Compound Symmetry

Symmetry C_2 energy MP2 = -6442.3460668 au

2

Standard orientation				
6	0	0.126941	-4.164389	-0.351975
6	0	- 0.697788	-3.234203	0.364700
6	0	-1.672051	-3.804343	1.274606
6	0	-1.914267	-5.203915	1.2/5344
6	0	-1.1/1891	-0.05/344	0.486266
0	0	-0.137009	-3.331087	-0.314072
6	0	-1 348743	-1 025454	1 209164
ő	Ŏ	-2.249348	-1.607716	2.123131
6	0	-2.443492	-2.972184	2.126453
1	0	-2.678935	-5.595419	1.943949
1	0	-1.366383	-7.127033	0.489605
l 1	0	0.510/12	-6.201/11	-0.8/3/48
l 1	0	-1.203331	0.056006	1.1//151 2 705601
1	0	-3 166359	-3 432628	2.793091
34	0 0	1.672051	-3.661354	-1.358040
16	Ō	0.349979	-0.968885	-0.962588
6	0	-0.126941	4.164389	-0.351975
6	0	0.697788	3.234203	0.364700
6	0	1.672051	3.804343	1.274606
6	0	1.91426/	5.203915	1.2/5344
6	0	0.137000	0.03/344 5 531687	-0.314072
6	0	0.609363	1 795813	0 313016
ő	Ő	1.348743	1.025454	1.209164
6	0	2.249348	1.607716	2.123131
6	0	2.443492	2.972184	2.126453
1	0	2.678935	5.595419	1.943949
1	0	1.366383	7.127033	0.489605
l 1	0	-0.510/12	0.201/11	-0.8/3/48 1 177151
1	0	2 813365	0.965451	2 795691
1	0 0	3.166359	3.432628	2.797039
34	Ō	-1.672051	3.661354	-1.358040
16	0	-0.349979	0.968885	-0.962588
6	0	-2.796800	3.185257	0.158275
1	0	-2.811486	4.007468	0.874369
l 1	0	-3.800/24	3.018916	-0.2385/4
1	0	-2.429248	-3 185257	0.019844
1	0 0	2.811486	-4.007468	0.874369
1	Ō	3.800724	-3.018916	-0.238574
1	0	2.429248	-2.267462	0.619844
MP2/BSS-A Compound 3				
Symmetry Co				
energy $MP2 = -6$	5442 365514 ;	311		
Standard orientation				
6	0	0.429659	-4.291382	-0.326390
6	0	-0.429659	-3.390705	0.386115
6	0	-1.386456	-3.985993	1.295875
6	0	-1.480019	-5.3989/4	1.409014
6	0	0.094030	-0.232007	-0 200948
6	0 0	-0.470152	-1.962233	0.223861
Ğ	Ŏ	-1.246280	-1.196267	1.090196
6	0	-2.108660	-1.792365	2.033644
6	0	-2.183127	-3.165369	2.135521
1	0	-2.214554	-5.814778	2.096590
l	0	-0./86215	-/.312116	0.721350

S15

1	0	0.969056	-6.312283	-0.758020
1	0	-1.257929	-0.115078	0.986066
1	0	-2.702065	-1.156604	2.687175
1	0	-2.879096	-3.637147	2.826593
16	0	1.787137	-3.718326	-1.306263
34	0	0.501059	-1.059483	-1.196055
6	0	-0.429659	4.291382	-0.326390
6	0	0.429659	3.390/03	0.380115
0	0	1.380430	5 208074	1.293873
6	0	0.694050	6 232007	0.638948
6	0	-0 289889	5 671331	-0.200974
6	0	0.200000	1 962233	0.223861
6	Ő	1 246280	1 196267	1 090196
6	Õ	2.108660	1.792365	2.033644
6	0	2.183127	3.165369	2.135521
1	0	2.214554	5.814778	2.096590
1	0	0.786215	7.312116	0.721350
1	0	-0.969056	6.312283	-0.758020
1	0	1.257929	0.115078	0.986066
1	0	2.702065	1.156604	2.687175
1	0	2.879096	3.637147	2.826593
16	0	-1.787137	3.718326	-1.306263
34	0	-0.501059	1.059483	-1.196055
6	0	-2.931228	3.24/483	0.01/52/
l 1	0	-3.15/988	4.114562	0.640829
l 1	0	-3.841/30	2.893820	-0.4/2/54
1	0	-2.30/933	2.439470	0.018203
0	0	2.931220	-3.247463	0.01/32/
1	0	3.8/1730	-4.114302	-0.472754
1	0	2 507935	-2.875820	0.618205
1	0	2.507955	2.159170	0.010205
MP2/BSS-A				
Compound 4				
Symmetry C	2			
energy M	P2 = -10447.1847475	au		
Standard orientati	on			
6	0	-3.248055	-2.869481	-0.181003
6	0	-3.020466	-1.641928	0.522197
6	0	-4.084632	-1.189889	1.396779
6	0	-5.306127	-1.910984	1.468600
6	0	-5.5183/4	-3.036030	0.698463
6	0	-4.403404	-3.339424	-0.093529 0.204176
0	0	-1.00/033	-0.790382	0.394170
0	0	-1.703309	0.280402	2 185563
6	0	-2.713080	-0.068871	2.185505
1	0	-6.088528	-1 537703	2.244332
1	0	-6 462880	-3 572136	0 749630
1	Ő	-4 588377	-4 474993	-0 633501
1	Õ	-0.821983	0.907468	1.193774
1	Õ	-2.547906	1.494821	2.847741
1	0	-4.696868	0.235418	2.908392
34	0	-1.867653	-3.771376	-1.142979
34	0	-0.546161	-1.042148	-1.008053
6	0	3.248055	2.869481	-0.181003
6	0	3.020466	1.641928	0.522197
6	0	4.084632	1.189889	1.396779
6	0	5.306127	1.910984	1.468600
6	0	5.518374	3.036030	0.698463
6	0	4.465464	3.539424	-0.093529
6	0	1.867653	0.790382	0 394176

$ \begin{array}{c} 6\\ 6\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 34\\ 34\\ 6\\ 1\\ 1\\ 1\\ 6\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} $	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 1.705569\\ 2.713680\\ 3.889855\\ 6.088528\\ 6.462880\\ 4.588377\\ 0.821983\\ 2.547906\\ 4.696868\\ 1.867653\\ 0.546161\\ 0.816166\\ 1.447193\\ 0.010275\\ 0.394716\\ -0.816166\\ -1.447193\\ -0.010275\\ -0.394716\end{array}$	$\begin{array}{c} -0.280462\\ -0.647774\\ 0.068871\\ 1.537703\\ 3.572136\\ 4.474993\\ -0.907468\\ -1.494821\\ -0.235418\\ 3.771376\\ 1.042148\\ 4.291959\\ 4.846122\\ 4.931707\\ 3.403547\\ -4.291959\\ -4.846122\\ -4.931707\\ -3.403547\end{array}$	$\begin{array}{c} 1.270316\\ 2.185563\\ 2.244532\\ 2.127147\\ 0.749630\\ \textbf{-}0.633501\\ 1.193774\\ 2.847741\\ 2.908392\\ \textbf{-}1.142979\\ \textbf{-}1.008053\\ 0.411441\\ 1.107106\\ 0.045080\\ 0.884513\\ 0.411441\\ 1.107106\\ 0.045080\\ 0.884513\end{array}$
MP2/BSS-B				
$\begin{array}{c} \text{Compound} & 1 \\ \text{Symmetry} & C_1 \end{array}$				
energy $MP2 = -24$ Standard orientation	437.411118	au		
6	0	-4.142271	-0.451780	-0.566009
6	0	-3.276362	0.441418	0.151545
6	0	-5.327558	1.444036	1.135962
6	0	-6.127599	0.637149	0.354133
6	0	-5.526676	-0.318728	-0.489370
6	0	-1.117464	1.282826	0.003808
6	0	-1.757436	2.115444	1.888402
6	0	-3.133484	2.177594	1.933463
1	0	-7.210340	0.728906	0.388400
1	0	-6.141515	-1.011088	-1.059424
1	0	-0.034103	1.299638	0.888693
1	0	-3.641142	2.843351	2.548870
16	0	-3.541260	-1.786889	-1.565836
16	0	-0.963292	-0.410581	-1.226929
6	0	3.276410	-0.441320	0.150932
6	0	3.911736	-1.338035	1.094330
6	0	5.327889	-1.443253	1.135457
6	0	5.526538	0.318468	-0.491063
6	0	1.837288	-0.480181	0.065604
6	0	1.117/44 1.757984	-1.2822/1	0.949669
6	0	3.134046	-2.176357	1.934001
1	0	5.772694	-2.153126	1.830582
1	0	7.210458 6.141209	-0./28556 1.010472	0.386943
1	0	0.034367	-1.299148	0.889484
1	0	1.153784	-2.731483	2.550288
16	0	3.041903 3.540808	-2.841034 1.785877	2.029394
16	ŏ	0.962952	0.409756	-1.227462
6	0	3.053892	2.944447	-0.261137
1	U	3.900080 S17	3.10323/	0.383215
		• · ·		

1	0	2.727364	3.857287	-0.765187
1	0	2.223426	2.542002	0.322371
6	0	-3.054017	-2.944608	-0.258375
1	0	-3.906646	-3.164985	0.386346
1	0	-2.727634	-3.857782	-0.761912
1	0	-2.223394	-2.541791	0.324653

MP2/BSS-B Compound	2			
Symmetry	C_2 MP2 - 6442 21325	26 911		
Standard orien	tation	20 au		
6	0	0 119114	-4 179909	-0 361441
6	Ő	-0 703344	-3 248259	0.355270
6	Ő	-1 690195	-3 817386	1 251663
6	Ő	-1 945716	-5 214455	1 237520
6	Ő	-1 206877	-6.067283	0 444552
6	Ő	-0.159021	-5.544276	-0.340341
6	Ő	-0.603971	-1.810024	0.312405
6	Ő	-1.339831	-1.042074	1.213660
6	0	-2.249863	-1.624069	2.118221
6	0	-2.457030	-2.986470	2.108732
1	0	-2.718990	-5.604626	1.896921
1	0	-1.412161	-7.134924	0.435649
1	0	0.488140	-6.215502	-0.899194
1	0	-1.249088	0.039009	1.188733
1	0	-2.809909	-0.982661	2.794929
1	0	-3.189154	-3.446131	2.769706
3	4 0	1.690195	-3.681039	-1.338946
1	6 0	0.359844	-0.985901	-0.960503
6	0	-0.119114	4.179909	-0.361441
6	0	0.703344	3.248259	0.355270
6	0	1.690195	3.817386	1.251663
6	0	1.945716	5.214455	1.237520
6	0	1.206877	6.067283	0.444552
6	0	0.159021	5.544276	-0.340341
6	0	0.603971	1.810024	0.312405
6	0	1.339831	1.042074	1.213660
6	0	2.249863	1.624069	2.118221
6	0	2.457030	2.986470	2.108732
1	0	2.718990	5.604626	1.896921
1	0	1.412161	7.134924	0.435649
1	0	-0.488140	6.215502	-0.899194
1	0	1.249088	-0.039009	1.188733
l	0	2.809909	0.982661	2.794929
l	0	3.189154	3.446131	2.769706
3	4 0	-1.690195	3.681039	-1.338946
l	6 0	-0.359844	0.985901	-0.960503
6	0	-2.791932	3.226800	0.20/2/5
 1	0	-2./83431	4.0528/3	0.918640
1	0	-3.805880	3.068997	-0.16630/
l	0	-2.425811	2.308236	0.668059
6	0	2./91932	-3.220800	0.20/2/5
1	0	2./83431	-4.0528/3	0.918040
1	U	2.802880	-3.00899/	-0.10030/
1	0	2.423811	-2.308230	0.008039

MP2/BSS-B Compound Symmetry energy

 C_2 MP2 = -6442.2348538 au

3

Standard orientation				
6	0	0.429345	-4.312938	-0.331104
6	0	-0.429345	-3.410838	0.380322
6	0	-1.391588	-4.005540	1.284614
6	0	-1.499670	-5.418481	1.383830
6	0	-0.717254	-6.251653	0.610591
6	0	0.2/5550	-5.692131	-0.2194/0
0	0	-0.437904	-1.980301	0.229900
6	Ő	-2100550	-1 813028	2 036905
Ğ	ŏ	-2.185793	-3.186046	2.127628
1	0	-2.239734	-5.833396	2.065953
1	0	-0.820340	-7.331566	0.681828
1	0	0.953285	-6.334687	-0.776397
1	0	-1.238809	-0.134835	1.001506
l 1	0	-2.691624	-1.1///40	2.692989
1	0	-2.88/302	-3.0384/8	2.012301
34	0	0 512415	-1 070916	-1 192868
6	Ő	-0.429345	4.312938	-0.331104
Ğ	Ŏ	0.429345	3.410838	0.380322
6	0	1.391588	4.005540	1.284614
6	0	1.499670	5.418481	1.383830
6	0	0.717254	6.251653	0.610591
6	0	-0.275550	5.692131	-0.219470
6	0	0.457904	1.980561	0.229966
6	0	1.232402	1.216536	1.09931/
0	0	2.100330	3 186046	2.030903
1	0	2.105775	5 833396	2.127028
1	Ő	0.820340	7.331566	0.681828
1	Ŏ	-0.953285	6.334687	-0.776397
1	0	1.238809	0.134835	1.001506
1	0	2.691624	1.177740	2.692989
1	0	2.887302	3.658478	2.812581
16	0	-1.802410	3.742138	-1.294858
34	0	-0.512415	1.070916	-1.192868
6	0	-2.9320/4	3.282024	0.048277
l 1	0	-3.140839	4.152205	0.071052
1	0	-2 505312	2.930233	-0.420803 0.647267
6	Ő	2.932074	-3282024	0.047207
1	ŏ	3.146839	-4.152265	0.671052
1	0	3.851041	-2.930253	-0.426803
1	0	2.505312	-2.474960	0.647267
MP2/BSS-B				
Compound 4 Symmetry C				
energy $MP2 = -10$)447 036376	54 911		
Standard orientation	.05057	JH du		
6	0	-3.257675	-2.890539	-0.181318
6	0	-3.029032	-1.661182	0.518673
6	0	-4.093758	-1.207095	1.391672
6	0	-5.318522	-1.922976	1.459127
6	0	-5.532306	-3.047509	0.689016
6	0	-4.4///18	-5.555427	-0.09/5/3
0	0	-1.8/33/3 _1.713/0/	-0.812340	U.394/40 1 270197
6	0	-1./13494 _7 777751	0.239234	1.2/010/ 2 183672
6	0	-3 899887	-0.085949	2.239401
ĩ	ŏ	-6.101250	-1.546550	2.115457
1	Ō	-6.479137	-3.579833	0.736459

		0	1 (01(04	4 401524	0 (2(21)
		0	-4.601694	-4.491534	-0.636316
	l	0	-0.830360	0.886646	1.193670
]		0	-2.556649	1.475614	2.845388
]		0	-4.708517	0.219679	2.900631
	34	0	-1.873375	-3.807143	-1.135219
	34	0	-0 549343	-1 057799	-1 013506
-		Õ	3 257675	2 800530	-0.181318
		0	2 020022	1 661100	0.519672
()	0	5.029052	1.001162	0.310073 1.201(72)
C)	0	4.093/58	1.20/095	1.3910/2
()	0	5.318522	1.922976	1.459127
(5	0	5.532306	3.047509	0.689016
(5	0	4.477718	3.555427	-0.097573
(5	0	1.873375	0.812346	0.394746
é	5	0	1 713494	-0 259234	1 270187
é	ĥ	Õ	2 722251	-0.628187	2 183672
, i i i i i i i i i i i i i i i i i i i		0 0	3 800887	0.020107	2.105072
l 1)	0	6 101250	1 546550	2.239401 2.115457
-		0	0.101230	1.340330	2.113437
		0	6.4/913/	3.5/9833	0./36459
	l	0	4.601694	4.491534	-0.636316
1		0	0.830360	-0.886646	1.193670
]		0	2.556649	-1.475614	2.845388
]	l	0	4.708517	-0.219679	2.900631
2	34	0	1 873375	3 807143	-1 135219
	84	Õ	0 549343	1 057799	-1 013506
-	S S	0	0.826052	1.037799	0.431718
l 1)	0	1 461721	4.517505	1 122022
-		0	1.401/21	4.83/334	1.133923
		0	0.024594	4.968619	0.0/6/2/
_	_	0	0.397695	3.427319	0.894762
(5	0	-0.826052	-4.317365	0.431718
]		0	-1.461721	-4.857334	1.133923
]	l	0	-0.024594	-4.968619	0.076727
1		0	-0 397695	-3 427319	0 894762
	-	0	0.097090	01127019	0.03 .702
MP2/BSS-C					
Compound	Model A (S S)				
Compound	C				
Symmetry	C_2	0.0000			
energy	MP2 = -1594.3	864296 au			
Standard oriei	ntation				
]	16	0	-0.182058	4.515400	-0.205900
]		0	-1.468017	4.148897	-0.199415
1		0	-0.047725	4.277458	1.103112
1	6	0	-0 182058	1 013261	0 195466
-		Õ	0 706861	1 383101	-0 736758
1	6	0	0.182058	1.013261	0.105/66
-		0	0.102050	1 282101	0.175400
		0	-0./00801	-1.565101	-0.750758
	0	0	0.182058	-4.515400	-0.205900
_		0	1.468017	-4.148897	-0.199415
1		0	0.047725	-4.277458	1.103112
MP2/BSS-C					
Compound	Model A (S. Se	.)			
Symmetry	C_2)			
energy	MP2 = -5508	67083 211			
Standard origi	$1\sqrt{112} = -5570.0$	07005 au			
Stanuaru Oriel	1(at1011 21	0	0 101650	160000	0 144952
-) (U	-0.101000	4.022820	-0.144833
-		U	-1.388/48	4.221117	-0.128045
]		0	-0.050681	4.363083	1.289371
1	16	0	-0.181650	1.013911	0.276232
]	l	0	0.708042	1.382131	-0.656020
1	16	0	0.181650	-1.013911	0.276232
1		0	-0.708042	-1.382131	-0.656020
	34	Õ	0 181650	-4 622826	-0 144853
-	/ ·	õ	1 5887/8	_4 221117	_0 128045
1	L	v	1.000/10	т. 44 1 1 1 /	0.120045

1

0

MP2/BSS-C Compound Symmetry	Model A (Se, S	5)			
energy	MP2 = -5598.8	873202 au			
Standard orien	ntation				
]	16	0	-0.178113	4.713482	-0.269990
1	l	0	-1.497904	4.497647	-0.263533
]	l	0	-0.099774	4.642358	1.063186
-	34	0	-0.178113	1.156788	0.129932
]		0	0.816430	1.483883	-0.897504
-	34	0	0.1/8113	-1.156/88	0.129932
-		0	-0.816430	-1.483883	-0.89/504
1	10	0	0.1/8113	-4./13482	-0.209990
-		0	1.49/904	-4.49/04/	-0.203333
1	L	0	0.099774	-4.042338	1.003180
MP2/BSS-C					
Compound	Model A (Se, S	le)			
Symmetry	C_2	,			
energy	MP2 = -9603.3	680377 au			
Standard orien	ntation				
	34	0	-0.182597	4.822859	-0.211016
]		0	-1.626869	4.587078	-0.191482
		0	-0.108816	4.736923	1.248127
-	34	0	-0.18259/	1.156943	0.204148
	L 2 4	0	0.811032	1.485903	-0.823132
-)4 I	0	0.162397	-1.130943	0.204146
	34	0	0.182597	-4 822859	-0.211016
-		0	1 626869	-4 587078	-0 191482
1		ŏ	0.108816	-4.736923	1.248127
-	-	0	01100010		11210127
MP2/BSS-C					
Compound	Model $\mathbf{B}(\mathbf{S}, \mathbf{S})$				
Symmetry	C_2	~			
energy	MP2 = -1672.7	825301 au			
Standard orien	ntation	0	0.022052	1 ((5220)	0.504105
1	10	0	0.033052	4.005330	-0.594195
-	[0	1.102215	3.910808	-0.301009
1	16	0	-0.033052	1 016046	-0.046834
ť	іо б	0	-1 236521	1 378588	1 259139
1		ŏ	-1 345657	2 467242	1 267210
]	[Ō	-0.865966	1.038081	2.228135
]	l	0	-2.191585	0.904919	1.025423
1	16	0	0.033052	-1.016046	-0.046834
(5	0	1.236521	-1.378588	1.259139
]		0	1.345657	-2.467242	1.267210
		0	0.865966	-1.038081	2.228135
-		0	2.191585	-0.904919	1.025423
1	10	0	-0.033032 -	4.003330	-0.394193
-		0	-1.102213	-3.910808	-0.301009
1	L	0	0.304077	-5.192190	-1.3100/3
MP2/BSS-C					
Compound	Model B (S. Se				
Symmetry	C_2	,			
energy	MP2 = -5677.5	934432 au			
Standard orien	ntation				
-	34	0	-1.639103	4.476296	-0.439268
]	l	U	-0.2697/76	4.116144	-0.091607
			S21		

1	0	-1.713461	3.380979	-1.398721
16	0	-0.384516	0.941301	0.157116
6	0	-1.639103	0.861442	1.463103
1	0	-2.121271	1.843712	1.471331
1	0	-1.173262	0.671626	2.432260
1	0	-2.369160	0.084525	1.229363
16	0	0.384516	-0.941301	0.157116
6	0	1.639103	-0.861442	1.463103
1	0	2.121271	-1.843712	1.471331
1	0	1.173262	-0.671626	2.432260
1	0	2.369160	-0.084525	1.229363
34	0	1.639103	-4.476296	-0.439268
1	0	0.269776	-4.116144	-0.091607
1	0	1.713461	-3.380979	-1.398721

MP2/BSS-C					
Compound	Model B (Se. S				
Symmetry	C_2)			
energy	MP2 = -5677.6	170425 au			
Standard orient	ation				
16	5	0	0.006526	4.871876	-0.383168
1		0	1.162178	4.221800	-0.205497
1		0	-0.306535	4.132058	-1.453042
34	1	0	-0.006526	1.150201	-0.131536
6		0	-1.311374	1.473206	1.280728
1		0	-1.420013	2.559149	1.342596
1		0	-0.938873	1.076158	2.225612
1		0	-2.258298	1.006515	1.008879
34	1	0	0.006526	-1.150201	-0.131536
6		0	1.311374	-1.473206	1.280728
1		0	1.420013	-2.559149	1.342596
1		0	0.938873	-1.076158	2.225612
1		0	2.258298	-1.006515	1.008879
16	5	0	-0.006526	-4.871876	-0.383168
1		0	-1.162178	-4.221800	-0.205497
1		0	0.306535	-4.132058	-1.453042

1	0	-1.162178	-4.221800	-0.205497
1	0	0.306535	-4.132058	-1.453042
MP2/BSS-C				
Compound N	Model B (Se, Se)			
Symmetry C	2			
energy N	$\bar{AP2} = -9682.4281348$ a	u		
Standard orientat	ion			
34	0	0.009020	4.968138	-0.312082
1	0	1.238022	4.215643	-0.089448
1	0	-0.349244	4.112067	-1.436923
34	0	-0.009020	1.150500	-0.030465
6	0	-1.315106	1.469237	1.381989
1	0	-1.427252	2.554902	1.444264
1	0	-0.941505	1.073163	2.326892
1	0	-2.260626	0.999768	1.109897
34	0	0.009020	-1.150500	-0.030465
6	0	1.315106	-1.469237	1.381989
1	0	1.427252	-2.554902	1.444264
1	0	0.941505	-1.073163	2.326892
1	0	2.260626	-0.999768	1.109897
34	0	-0.009020	-4.968138	-0.312082
1	0	-1.238022	-4.215643	-0.089448
1	0	0.349244	-4.112067	-1.436923
	-	-		

au

MP2/BSS-C

Compound	Model C (S, S)
Symmetry	C_2
energy	MP2 = -1751.1629564

Standard orientation				
16	0	0.068525	4.283003	-0.366693
6	0	-1./13850	4.216418	-0.108397
1	0	-2.183028	4.231333	-1.094/89
1	0	-2.050458	5.083558	0.466593
6	Ō	0.599512	4.210148	1.354313
1	0	1.691480	4.242634	1.356065
1	0	0.211717	5.067542	1.911405
l 16	0	0.26/343	3.2/5344	1.814360
10	0	-0.008525	1.052498	-0.323374 -1.257850
16	0	0.068525	-1.032498	-0.325574
1	0	-0.855657	-1.297836	-1.257850
16	0	-0.068525	-4.283003	-0.366693
6	0	1.713850	-4.216418	-0.108397
 1	0	2.183028	-4.231555	-1.094789
1	0	1.989082	-3.290847	0.405005
6	0	-0 599512	-4 210148	1 354313
1	0	-1.691480	-4.242634	1.356065
1	Ő	-0.211717	-5.067542	1.911405
1	0	-0.267343	-3.275344	1.814360
MP2/BSS-C				
Compound Mode	1 C (S Se)			
Symmetry C_2				
energy MP2 =	= -5755.9852957	au		
Standard orientation				
34	0	0.045975	4.362268	-0.265867
6 1	0	-1.883660	4.198464	-0.3545/5
1	0	-2.102201	4.232724	-1.408700 0.055410
1	0	-2.351755	5.018650	0.193152
6	0	0.183513	4.201277	1.661149
1	0	1.244141	4.259890	1.913132
1	0	-0.355443	5.020114	2.141633
1(0	-0.214814	3.234662	1.976065
10	0	-0.043973	1.034900	-0.101055 -1.093760
16	0	0.045975	-1 034960	-0 161053
1	Ő	-0.883346	-1.279754	-1.093760
34	0	-0.045975	-4.362268	-0.265867
6	0	1.883660	-4.198464	-0.354575
1	0	2.162261	-4.252724	-1.408766
1	0	2.18/100	-3.233051	0.055410
6	0	-0 183513	-3.018030	1 661149
1	0	-1 244141	-4 259890	1 913132
1	Ő	0.355443	-5.020114	2.141633
1	0	0.214814	-3.234662	1.976065
MP2/BSS-C				
Compound Mode	1 C (Se S)			
Symmetry C_2	- (,~)			
energy MP2 =	= - 5755.9953278	au		
Standard orientation	-	0.0.0		
16	0	0.065085	4.435988	-0.292079
0 1	0	-1./2/3/3 2 156707	4.444886	-0.103/80
1 1	0	-2.130/8/	4.420840 3 559461	-1.10/888
1	0 0	-2.053690	5.353663	0.409386
6	Ō	0.526849	4.445599	1.450379

1	0	1.618291	4.432289	1.494093
1	0	0.155483	5.350291	1.939641
1	0	0.137317	3.554704	1.951214
34	0	-0.065085	1.168794	-0.214822
1	0	0.953300	1.393605	-1.236719
34	0	0.065085	-1.168794	-0.214822
1	0	-0.953300	-1.393605	-1.236719
16	0	-0.065085	-4.435988	-0.292079
6	0	1.727373	-4.444886	-0.103780
1	0	2.156787	-4.420840	-1.107888
1	0	2.056586	-3.559461	0.447890
1	0	2.053690	-5.353663	0.409386
6	0	-0.526849	-4.445599	1.450379
1	0	-1.618291	-4.432289	1.494093
1	0	-0.155483	-5.350291	1.939641
1	0	-0.137317	-3.554704	1.951214

MP2/BSS-C

CompoundModel C (Se, Se)Symmetry C_2 energyMP2 = -9760.8173984 auStandard orientation

34	0	0.095084	4.527300	-0.223212
6	0	-1.650779	4.367457	0.604231
1	0	-2.392255	4.424428	-0.194976
1	0	-1.729597	3.402197	1.109425
1	0	-1.803663	5.186119	1.310110
6	0	1.120007	4.323935	1.410399
1	0	2.175246	4.385461	1.137071
1	0	0.872707	5.127976	2.106348
1	0	0.910989	3.347040	1.851217
34	0	-0.095084	1.168347	-0.308439
1	0	0.917470	1.416624	-1.330830
34	0	0.095084	-1.168347	-0.308439
1	0	-0.917470	-1.416624	-1.330830
34	0	-0.095084	-4.527300	-0.223212
6	0	1.650779	-4.367457	0.604231
1	0	2.392255	-4.424428	-0.194976
1	0	1.729597	-3.402197	1.109425
1	0	1.803663	-5.186119	1.310110
6	0	-1.120007	-4.323935	1.410399
1	0	-2.175246	-4.385461	1.137071
1	0	-0.872707	-5.127976	2.106348

1	0	-0.910989	-3.347040	1.851217
MP2/BSS-C				
Compound Model I	$\mathbf{D}(\mathbf{S},\mathbf{S})$			
Symmetry C_2				
energy $MP2 = .$	-1829.5581602	au		
Standard orientation				
16	0	-0.004779	4.375512	-0.215236
6	0	1.648002	3.936488	-0.783142
1	0	2.344018	4.197981	0.017303
1	0	1.709069	2.861735	-0.975127
1	0	1.904904	4.499661	-1.684758
6	0	-0.942748	3.834623	-1.656668
1	0	-1.995367	4.048161	-1.455672
1	0	-0.627992	4.386121	-2.547133
1	0	-0.814268	2.759198	-1.807674
16	0	0.004779	1.020351	0.559049
6	0	-1.182950	1.411477	1.871349
1	0	-1.246563	2.502854	1.895125
1	0	-0.824545	1.040149	2.833891
		004		

1		0	-2.155977	0.977199	1.633816
1	6	0	-0.004779	-1.020351	0.559049
6		0	1.182950	-1.411477	1.871349
1		0	1.246563	-2.502854	1.895125
1		0	0.824545	-1.040149	2.833891
1		0	2.155977	-0.977199	1.633816
1	6	0	0.004779	-4.375512	-0.215236
6		0	-1.648002	-3.936488	-0.783142
1		0	-2.344018	-4.197981	0.017303
1		0	-1.709069	-2.861735	-0.975127
1		0	-1.904904	-4.499661	-1.684758
6		0	0.942748	-3.834623	-1.656668
1		0	1.995367	-4.048161	-1.455672
1		0	0.627992	-4.386121	-2.547133
1		0	0.814268	-2.759198	-1.807674
MP2/BSS-C					
Compound	Model D (S. Se)			
Symmetry	C_2)			
energy	MP2 = -5834.3	805116 au			
Standard orien	tation				
3	Λ	0	0.026018	1 151370	-0.166032

34	0	0.026018	4.454379	-0.166032
6	0	1.846485	3.915411	-0.555540
1	0	2.461657	4.223944	0.292068
1	0	1.889133	2.829848	-0.664001
1	0	2.193861	4.412553	-1.463399
6	0	-0.751942	3.757500	-1.799680
1	0	-1.821504	3.974721	-1.765179
1	0	-0.304777	4.252891	-2.663808
1	0	-0.595870	2.677715	-1.842872
16	0	-0.026018	1.020475	0.612828
6	0	-1.225147	1.374405	1.925519
1	0	-1.324326	2.463198	1.949019
1	0	-0.854287	1.015207	2.887956
1	0	-2.183666	0.908873	1.688231
16	0	0.026018	-1.020475	0.612828
6	0	1.225147	-1.374405	1.925519
1	0	1.324326	-2.463198	1.949019
1	0	0.854287	-1.015207	2.887956
1	0	2.183666	-0.908873	1.688231
34	0	-0.026018	-4.454379	-0.166032
6	0	-1.846485	-3.915411	-0.555540
1	0	-2.461657	-4.223944	0.292068
1	0	-1.889133	-2.829848	-0.664001
1	0	-2.193861	-4.412553	-1.463399
6	0	0.751942	-3.757500	-1.799680
1	0	1.821504	-3.974721	-1.765179
1	0	0.304777	-4.252891	-2.663808
1	0	0.595870	-2.677715	-1.842872

MP2/BSS-C					
Compound	Model D (Se,	S)			
Symmetry	C_2				
energy	MP2 = -5834.	3942751	au		
Standard orient	Standard orientation				
16		0	-0.051484	4.513532	-0.217264
6		0	1.421781	4.157784	-1.191826
1		0	2.284740	4.304354	-0.538203
1		0	1.404826	3.120512	-1.539314
1		0	1.490906	4.840778	-2.043099
6		0	-1.299916	4.166189	-1.471107
1		0	-2.276252	4.339404	-1.011855
1		0	-1.180864	4.837359	-2.326351

1	0	-1.230579	3.122623	-1.791398
34	0	0.051484	1.154987	0.352646
6	0	-1.233825	1.515930	1.774179
1	0	-1.272987	2.603409	1.873400
1	0	-0.887706	1.063974	2.704715
1	0	-2.207997	1.116150	1.490886
34	0	-0.051484	-1.154987	0.352646
6	0	1.233825	-1.515930	1.774179
1	0	1.272987	-2.603409	1.873400
1	0	0.887706	-1.063974	2.704715
1	0	2.207997	-1.116150	1.490886
16	0	0.051484	-4.513532	-0.217264
6	0	-1.421781	-4.157784	-1.191826
1	0	-2.284740	-4.304354	-0.538203
1	0	-1.404826	-3.120512	-1.539314
1	0	-1.490906	-4.840778	-2.043099
6	0	1.299916	-4.166189	-1.471107
1	0	2.276252	-4.339404	-1.011855
1	0	1.180864	-4.837359	-2.326351
1	0	1.230579	-3.122623	-1.791398

 $\begin{array}{ccc} \text{MP2/BSS-C} \\ \text{Compound} & \text{Model } \mathbf{D} \text{ (Se, Se)} \\ \text{Symmetry} & C_2 \\ \text{energy} & \text{MP2} = -9839.2165615 \text{ au} \\ \text{Standard orientation} \\ \end{array}$

onentation				
34	0	-0.103719	4.575692	-0.267441
6	0	1.152174	3.974659	-1.615846
1	0	2.155075	4.187088	-1.240267
1	0	1.034330	2.899428	-1.767916
1	0	0.983833	4.518219	-2.547614
6	0	-1.702226	4.001260	-1.203950
1	0	-2.556127	4.256668	-0.572784
1	0	-1.782813	4.526435	-2.157839
1	0	-1.661889	2.920233	-1.355797
34	0	0.110131	1.151097	0.513562
6	0	-1.152174	1.576996	1.938136
1	0	-1.129678	2.664473	2.044170
1	0	-0.831358	1.100736	2.865664
1	0	-2.148048	1.234909	1.654220
34	0	-0.110131	-1.151097	0.513562
6	0	1.152174	-1.576996	1.938136
1	0	1.129678	-2.664473	2.044170
1	0	0.831358	-1.100736	2.865664
1	0	2.148048	-1.234909	1.654220
34	0	0.103719	-4.575692	-0.267441
6	0	-1.152174	-3.974659	-1.615846
1	0	-2.155075	-4.187088	-1.240267
1	0	-1.034330	-2.899428	-1.767916
1	0	-0.983833	-4.518219	-2.547614
6	0	1.702226	-4.001260	-1.203950
1	0	2.556127	-4.256668	-0.572784
1	0	1.782813	-4.526435	-2.157839
1	0	1.661889	-2.920233	-1.355797