Electronic Supplementary Information

Benzimidazole based Pt(II) complexes with better normal cell viability than *cis*platin: Synthesis, substitution behavior, cytotoxicity, DNA binding and DFT study

Ishani Mitra^a, Subhajit Mukherjee^a, Venkata P. Reddy B.^a, Subrata Dasgupta^a, Jagadeesh C. Bose K.^b, Sandip Mukherjee^c, Wolfgang Linert^d and Sankar Ch. Moi^{*a}

1	ESI Fig. S1	IR spectra of complex 1
2	ESI Fig. S2	¹ H NMR spectra of complex 1 in DMSO-D ₆ as solvent
3	ESI Fig. S3	¹³ C NMR spectra of complex 1
4	ESI Fig. S4	IR spectra of complex 2
5	ESI Fig. S5	¹ H NMR spectra of complex 2 in DMSO-D ₆ as solvent
6	ESI Fig. S6	Job's plot for the formation of complex 3
7	ESI Fig. S7	Job's plot for the formation of complex 4
8	ESI Fig. S8	Spectral difference between complex 2 and 3
9	ESI Fig. S9	Spectral difference between complex 2 and 4
10	ESI Fig. S10	IR spectra of complex 3
11	ESI Fig. S11	¹ H NMR spectra of complex 3 in DMSO-D ₆ as solvent
12	ESI Fig. S12	ESI Mass spectrum of complex 3 in water
13	ESI Fig. S13	IR spectra of complex 4
14	ESI Fig. S14	¹ H NMR spectra of complex 4 in D_2O as solvent
15	ESI Fig. S15	ESI Mass spectrum of complex 4 in water
16	ESI Fig. S16	Major contribution of molecular orbitals involved in electronic transitions in complex 1
17	ESI Fig. S17	A typical plot of $ln(A_{\alpha} - A_t)$ versus time (min): [complex 2] = 1.50 × 10 ⁻⁴ M; [GSH] = 1.50 ×
		10 ⁻³ M; temperature = 25 °C, inset: typical plot of In Δ vs time (min)
18	ESI Fig. S18	Plot of 10 ³ k _{1(obs)} versus 10 ³ [DL-pen] from temperature 25 to 45 °C
19	ESI Fig. S19	Plot of 10 ³ k _{1(obs)} versus 10 ³ [GSH] from temperature 25 to 45 °C
20	ESI Fig. S20	Plot of $1/10^3 \times k_{1(obs)}$ versus $1/10^3$ [GSH] at different temperatures
21	ESI Fig. S21	Eyring plot (In k_1h/k_BT vs. 10 ³ 1/T) for the reaction of complex 2 with DL-pen
22	ESI Fig. S22	Eyring plot (In k_2h/k_BT vs. 10 ³ 1/T) for the reaction of complex 2 with DL-pen
23	ESI Fig. S23	Eyring plot (In k_1h/k_BT vs. 10 ³ 1/T) for the reaction of complex 2 with GSH
24	ESI Fig. S24	Eyring plot (In k_2h/k_BT vs. 10 ³ 1/T) for the reaction of complex 2 with GSH
25	ESI Fig. S25	Optimised structures of complexes 2-4
26	ESI Fig. S26	Optimised structures of probable complex 3' (S,N) and probable complex 4' (S,N)
27	ESI Fig. S27	UV spectra of 3 (20 μ M) in Tris-HCl buffer in the presence of increasing amounts of CT-
		DNA(0-200 μ M). Inset: linear fit of [DNA]/[\mathcal{E}_a - $\mathcal{E}_{f,}$] vs. [DNA]
28	ESI Fig. S28	UV spectra of 4 (20µM) in Tris-HCl buffer in the presence of increasing amounts of CT-
		DNA(0-200 μ M). Inset: linear fit of [DNA]/[ϵ_a - ϵ_f] vs. [DNA]
29	ESI Fig. S29	Emission spectra of EtBr-bound DNA solutions in the absence and presence of increasing
		concentrations of 3 . Inset: Stern-Volmer plot of the fluorescence data
30	ESI Fig. S30	Emission spectra of EtBr-bound DNA solutions in the absence and presence of increasing
		concentrations of 4. Inset: Stern-Volmer plot of the fluorescence data
31	ESI Fig. S31	Scatchard plots for complexes 2-4
32	ESI Fig. S32	Magnified view of the docked models showing the interaction of complexes 2-4 with DNA
		base pairs
33	ESI Fig. S33	Agarose gel electrophoresis pattern of plasmid DNA treated with cisplatin and complexes

		2-4
34	ESI Fig. S34	Microscopic images of untreated and complex treated HeLa cells
35	ESI Fig. S35	Microscopic images of untreated and complex treated A549 cells
36	ESI Fig. S36	Percentage of cell survivability and ROS production in mice liver cells after 4h incubation
		with 50 μ M of cisplatin and complexes 2-4 .
37	ESI Table S1	$10^3 \times k_{1(obs)}$ (s ⁻¹) values at different [DL-pen] and [GSH] at different temperatures. [Complex
		2] = 1.50×10 ⁻⁴ M, pH = 4.0, ionic strength = 0.1 M NaClO ₄
38	ESI Table S2	10 ⁵ xk _{2(obs)} (s ⁻¹) values at different [DL-pen] and [GSH] at different temperatures;[Complex 2]
		= 1.50×10^{-4} mol.dm ⁻³ , pH = 4.0, ionic strength = 0.1 M NaClO ₄
39	ESI Table S3	Activation parameters of analogous systems
40	ESI Table S4	Charges (a.u.) and electron configurations for the complexes 3(S, O) and 3'(S, N)
41	ESI Table S5	Charges (a.u.) and electron configurations for the complexes 4(S, O) and 4'(S, N)
42	ESI Table S6	Hydrogen bonding interactions and the binding free energy of the most stable docking
		conformations for complexes 2–4 docked into DNA

ESI Fig. S1 IR spectra of complex 1

ESI Fig. S2 ¹H NMR spectra of complex 1 in DMSO-D₆ as solvent

ESI Fig. S3 ¹³C NMR spectra of complex 1 in DMSO-D₆

ESI Fig. S4 IR spectra of complex 2

ESI Fig. S5 ^1H NMR spectra of complex 2 in DMSO-D_6 as solvent

ESI Fig. S6 Job's plot for the formation of complex 3

ESI Fig. S7 Job's plot for the formation of complex 4

ESI Fig. S8 Spectral difference between the reactant and product - **A**: $[Pt(ambim)(H_2O)_2]^{2+} = 1.50 \times 10^{-4}$ mol.dm⁻³, **B**: $[Pt(ambim)(H_2O)_2]^{2+} = 1.50 \times 10^{-4}$ mol.dm⁻³, [DL-penicillamine] = 1.50×10^{-3} mol.dm⁻³, pH = 4.0

ESI Fig. S9 Spectral difference between the reactant and product - **A**: $[Pt(ambim)(H_2O)_2]^{2+} = 1.50 \times 10^{-4}$ mol.dm⁻³, **B**: $[Pt(ambim)(H_2O)_2]^{2+} = 1.50 \times 10^{-4}$ mol.dm⁻³, [Glutathione] = 1.50×10^{-3} mol.dm⁻³, pH = 4.0

ESI Fig. S10 IR spectra of complex 3

ESI Fig. S11 ^1H NMR spectra of complex 3 in DMSO-D_6 as solvent

ESI Fig. S12 ESI Mass spectra of complex 3 in water

ESI Fig. S13 IR spectra of complex 4

ESI Fig. S14 ^1H NMR spectra of complex 4 in DMSO-D₆ as solvent

ESI Fig. S15 ESI Mass spectra of complex 4 in water

ESI Fig. S16 Major contribution of molecular orbitals involved in electronic transitions in complex 1

ESI Fig. S17 A typical plot of $ln(A_{\alpha} - A_t)$ versus time (min): [complex **2**] = 1.50×10^{-4} M; [GSH] = 1.50×10^{-3} M; temperature = 25 °C, inset: typical plot of $ln \Delta$ vs time (min)

ESI Fig. S18 Plot of $10^3k_{1(obs)}$ versus $10^3[\text{DL-pen}]$ from temperature 25 to 45 $^{\rm o}\text{C}$

ESI Fig. S19 Plot of $10^3k_{1(obs)}$ versus $10^3[\mbox{GSH}]$ from temperature 25 to 45 $^{\rm o}\mbox{C}$

ESI Fig. S20 Plot of $1/10^3 \times k_{1(obs)}$ versus $1/10^3$ [GSH] at different temperatures

ESI Fig. S21 Eyring plot (In k_1h/k_BT vs. 10³1/T) for the reaction of complex 2 with DL-pen

ESI Fig. S22 Eyring plot (In k_2h/k_BT vs. 10³1/T) for the reaction of complex 2 with DL-pen

ESI Fig. S23 Eyring plot (In k_1h/k_BT vs. 10³1/T) for the reaction of complex 2 with GSH

ESI Fig. S24 Eyring plot (In k_2h/k_BT vs. 10³1/T) for the reaction of complex 2 with GSH

ESI Fig. S25 Optimised structures of complex 2, 3 and 4

ESI Fig. S26 Optimised structures of probable complex 3'(S, N) and probable complex 4'(S, N)

ESI Fig. S27 UV spectra of solutions containing complex **3** (20 μ M) upon addition of CT-DNA (0–200 μ M) in Tris–HCl buffer. The arrow shows the changes in absorbance on increasing DNA concentration. Inset: Plots of [DNA]/[ϵ_a - ϵ_f] vs. [DNA] for the titration of the complex **3** with DNA

ESI Fig. S28 UV spectra of solutions containing complex **4** (20 μ M) upon addition of CT-DNA (0–200 μ M) in Tris–HCl buffer. The arrow shows the changes in absorbance on increasing DNA concentration. Inset: Plots of [DNA]/[ϵ_a - ϵ_f] vs. [DNA] for the titration of the complex **4** with DNA

ESI Fig. S29 Emission spectra of EtBr-bound DNA solutions in the absence and presence of increasing concentrations of **3**(10–100 μ M) in Tris–HCl. [EtBr]= 20.0 μ M, [DNA] = 20.0 μ M. The arrow show the change in intensity upon increasing amounts of the complex. Inset: Stern–Volmer plot of the fluorescence data.

ESI Fig. S30 Emission spectra of EtBr-bound DNA solutions in the absence and presence of increasing concentrations of **4**(10–100 μ M) in Tris–HCI. [EtBr]= 20.0 μ M, [DNA] = 20.0 μ M. The arrow show the change in intensity upon increasing amounts of the complex. Inset: Stern–Volmer plot of the fluorescence data.

ESI Fig. S31 Scatchard plots for complexes 2-4

ESI Fig. S32 Magnified view of docked model showing the interaction of DNA bases with (A) complex 2, (B) complex 3 and (C) complex 4

ESI Fig. S33 Gel electrophoresis

ESI Fig. S34 Microscopic images (A) untreated HeLa cells, (B) treated with 10μ M of complex **2**, (C) complex **3**, (D) complex **4**, (E) ambim and (F) *cis*platin.

ESI Fig. S35 Microscopic images (A) untreated A549 cells, (B) treated with 10μ M of complex **2**, (C) complex **3**, (D) complex **4**, (E) ambim and (F) *cis*platin.

ESI Fig. S36 Percentage of cell survivability and ROS production in mice lung cells after 4h incubation with 50 μ M of cisplatin and complexes **2-4**.

ESI Table S1 $10^3 \times k_{1(obs)}$ (s⁻¹) values at different [DL-pen] and [GSH] at different temperatures. [Complex **2**] = 2.54×10^{-4} M, pH = 4.0, ionic strength = 0.1 M NaClO₄

10 ³ × [L]					Ter	np (⁰C)				
mol.dm ⁻³			DL-pen			GSH				
	25°C	30 °C	35 °C	40 °C	45 °C	25 °C	30 °C	35 °C	40°C	45 °C
1.50	0.25 ± 0.06	0.39 ± 0.07	0.56 ± 0.04	0.88 ± 0.02	1.22 ± 0.04	1.22 ± 0.06	1.51 ± 0.08	2.00 ± 0.07	2.58 ± 0.04	3.42 ± 0.13
2.25	0.34 ± .10	0.52 ± 0.06	0.74 ± 0.13	1.16 ± 0.08	1.59 ± 0.05	1.55 ± 0.04	1.92 ± 0.05	2.53 ± 0.08	3.22 ± 0.14	4.23 ± 0.06
3.00	0.42 ± 0.12	0.63 ± 0.05	0.89 ± 0.09	1.38 ± 0.06	1.87 ± 0.12	1.80 ± 0.10	2.22 ± 0.12	2.91 ± 0.11	3.67 ± 0.07	4.80 ± 0.09
3.75	0.48 ± 0.09	0.72 ± 0.14	1.01 ± 0.11	1.55 ± 0.09	2.09 ± 0.03	2.00 ± 0.11	2.45 ± 0.07	3.19 ± 0.04	4.02 ± 0.06	5.22 ± 0.10
4.50	0.53 ± 0.02	0.80 ± 0.03	1.11 ± 0.04	1.70 ± 0.04	2.27 ± 0.06	2.15 ± 0.02	2.63 ± 0.05	3.42 ± 0.09	4.28 ± 0.03	5.55 ± 0.15

ESI Table S2 $10^5 \times k_{2(obs)}$ (s⁻¹) values at different [DL-pen] and [GSH] at different temperatures; [Complex **2**] = 1.50×10^{-4} mol.dm⁻³, pH = 4.0, ionic strength = 0.1 mol·dm⁻³ NaClO₄

10 ⁵ × [L]	Temp(°C)									
mol.dm ⁻³			DL-pen			GSH				
	25 °C	30 °C	35 °C	40 °C	45 °C	25 °C	30 °C	35 °C	40 °C	45 °C
1.50	1.03 ±	1.56 ±	2.00 ±	2.49 ±	3.41 ±	3.18 ±	3.92 ±	4.95 ±	5.56 ±	6.94 ±
	0.06	0.10	0.05	0.13	0.04	0.08	0.05	0.12	0.15	0.10
2.25	1.18 ±	1.42 ±	1.89 ±	2.68 ±	3.62 ±	3.22 ±	4.07 ±	4.87 ±	5.71 ±	6.85 ±
	0.14	0.04	0.09	0.03	0.05	0.10	0.09	0.06	0.08	0.05
3.00	1.25 ±	1.37 ±	1.92 ±	2.56 ±	3.38 ±	3.03 ±	4.15 ±	4.71 ±	5.90 ±	6.69 ±
	0.03	0.07	0.02	0.14	0.08	0.05	0.06	0.08	0.07	0.03
3.75	1.11 ±	1.50 ±	2.11 ±	2.73 ±	3.29 ±	3.09 ±	3.97 ±	4.69 ±	5.83 ±	6.97 ±
	0.11	0.03	0.08	0.05	0.06	0.06	0.11	0.07	0.11	0.13
4.50	1.28 ±	1.45 ±	1.98 ±	2.59 ±	3.50 ±	3.23 ±	3.89 ±	4.88 ±	5.80 ±	6.90 ±
	0.04	0.05	0.03	0.08	0.10	0.04	0.09	0.10	0.08	0.06

Systems	ΔH ₁ [‡] (kJ mol⁻¹)	ΔS ₁ [‡] (JK mol⁻¹)	ΔH₂ [‡] (kJ mol⁻¹)	ΔS₂ [‡] (JK mol⁻¹)	Ref.
[Pt(ambim)(H ₂ O) ₂] ²⁺ /	43.79 ±1.31	-149.00 ±1.20	38.7 ±1.16	-205.12 ±1.78	
DL-penicillamine					This
[Pt(ambim)(H ₂ O) ₂] ²⁺ /	31.04 ±1.44	-184.65 ±1.17	26.46 ±1.19	-239.16 ±1.61	work
Glutathione					
[Pt(pic)(H ₂ O) ₂] ²⁺ /	34.91±0.97	-174.68±2.18	29.11±0.72	-233.74±2.4	
L-cysteine					1
[Pt(pic)(H ₂ O) ₂] ²⁺ /	21.12±0.35	-294.25±1.05	19.45±0.47	-267.68±1.6	
N-acetyl-L- cysteine					
[Pt(en)(H ₂ O) ₂] ²⁺ /	57.0 ± 3.0	-24.0 ± 1.1	36.0 ± 2.0	-69.0 ± 6.0	2
Thiourea					
$[Pt(terpy)(H_2O)]^{2+}/$	23 ± 1	-116 ± 3			3
Glutathione					
<i>cis</i> -[Pt(pic)(H ₂ O) ₂] ²⁺	52.37±2.10	-112.35±2.98	37.29±1.84	-130.12±3.16	4
/Glutathione					
[<i>cis</i> -Pt(en)(H ₂ O) ₂] ²⁺ /	61.90±1.6	-71±6	26.70±0.8	-186.80±2.7	5
thiourea					
$[cis-Pt(dach)(H_2O)_2]^{2+}$	32.9±1.3	-187.20±4.2	30.50±0.1	-223.1±4.3	6
/Glutathione					
$[cis-Pt(dach)(H_2O)_2]^{2+}/DL-$	36.10±4.1	-175±12	44.4±1.1	-189±3.0	7
penicillamine					

ESI Table S3 Activation parameters for analogous systems

ESI Table S4 Charges (a.u.) and electron configurations for the complexes 3(S, O) and 3'(S, N)

	Zero point corrected energy (hatree)	Atom	Charge	Natural Electron Configuration		Zero point corrected energy (hatree)	Atom	Charge	Natural Electron Configuration
mplex 3 (S, O)	-1393.51581	Pt1	0.36019	[core]6S(0.57) 5d(8.75)6p(0.31) 6d(0.01)	(S, N)	-1393.08842	Pt1	0.24480	[core]6S(0.60) 5d(8.84)6p(0.31) 6d(0.01)
		S1	-0.09227	[core]3S(1.72) 3p(4.34)3d(0.01) 4p(0.01)	Complex 3'		S1	-0.11505	[core]3S(1.73) 3p(4.36)3d(0.01) 4p(0.01)
ŭ		02	-0.63601	[core]2S(1.65) 2p(4.98)3p(0.01)		ŭ	N4 -0.81353	-0.81353	[core]2S(1.40) 2p(4.40)3p(0.01)
		N4	-0.81224	[core]2S(1.39) 2p(4.41)3p(0.01)			01	-0.71065	[core]2S(1.71) 2p(4.98)3d(0.01)
		01	-0.65427	[core]2S(1.71) 2p(4.93)3d(0.01)			02	-0.76542	[core]2S(1.72) 2p(5.03)3d(0.01)

ESI Table S5 Charges (a.u.) and electron configurations for the complexes 4(S, O) and 4'(S, N)

	Zero point corrected energy (hatree)	Atom	Charge	Natural Electron Configuration		Zero point corrected energy (hatree)	Atom	Charge	Natural Electron Configuration
ex 4 (S, O)	-1997.64846	Pt1	0.33887	[core]6S(0.57) 5d(8.76)6p(0.32) 6d(0.01)	:x 4' (S, N	-1997.635519	Pt1	0.30495	[core]6S(0.58) 5d(8.84)6p(0.26) 6d(0.02)
Comple		S1	-0.09714	[core]3S(1.72) 3p(4.34)3d(0.01) 4p(0.01)	Comple		\$1	-0.06732	[core]3S(1.73) 3p(4.31)3d(0.01) 4p(0.01)
		02	-0.63051	[core]2S(1.64) 2p(4.98)3p(0.01)			N4	-0.71611	[core]2S(1.36) 2p(4.34)3p(0.01)
		N4	-0.59370	[core]2S(1.26) 2p(4.32)3p(0.01)			02	-0.57169	[core]2S(1.69) 2p(4.86)3d(0.02)

ESI Table S6 Hydrogen bonding interactions and the binding free energy of the most stable docking conformations for complexes **2–4** docked into DNA

		ΔG (kJ mol⁻¹)		
Complex	Donor (D–H)	Acceptor (H…A)	H…A (Å)	
	N2-H1(ambim)	DG-4(O)	3.05	
	N2-H1(ambim)	DG-12(N)	2.84	
2	N3-H12(ambim)	DG-12(N)	3.23	-30.25
	N3-H13(ambim)	DC-13(N)	2.24	
	N3-H13(ambim)	DC-13(N)	2.61	
	N2-H5(ambim)	DG-4(O)	2.78	
3	N2-H5(ambim)	DC-13(N)	2.03	-30.12
	N2-H5(ambim)	DC-13(N)	3.21	
	N5-H21(GSH)	DA-17(O)	2.69	
4	N6-H24(GSH)	DC-11(O)	2.20	-28.45
	N6-H24(GSH)	DG-14(O)	2.94	
	N6-H22(GSH)	DC-15(O)	3.34	

References

(1) A. Samanta, G. K. Ghosh, I. Mitra, S. Mukherjee, J. C. Bose. K., S. Mukhopadhyay, W. Linert and S. C. Moi, *RSC Adv.*, 2014, **4**, 43516.

- (2) N. Summa, W. Schiess and R.van Eldik, Inorg. Chem., 2006, 45, 2948.
- (3) D. Ž. Bugarčić, T. Soldatovic, R. Jelic, B. Algues and A. Grandas, *Dalton Trans.*, **2004**, 3869.
- (4) G. K. Ghosh, K. Misra, W. Linert and S. C. Moi, Synth. React. Inorg. Met.-Org. Chem., 2013, 43, 6, 714.
- (5) P. S. Sengupta, S. Ghosh and G. S. De, *Transition Met. Chem.*, 2000, **25**, 279.
- (6) R. Sinha, A. K. Choudhary and G. S. De, Indian J. Chem., 2003, 42A, 473.
- (7) P. Karmakar, B. K. Bera, K. L. Barik, S. Mukhopadhay and A. K. Ghosh, J. Coord. Chem., 2010, 63, 2158.