Electronic Supporting Information

RSC Advances

Water Soluble β-Aminobisulfonate Building Blocks for pH and Cu²⁺ Indicators

Maria A. Cardona,¹ Marina Ilakovac Kveder,² Ulrich Baisch¹, Michael R. Probert³ and David C. Magri^{1*}

 ¹ Department of Chemistry, University of Malta, Msida, MSD 2080, Malta.
 ² Laboratory for Magnetic Resonances, Division of Physical Chemistry, Rudjer Boskovic Institute, Zagreb, Croatia.
 ³ School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

Table of Contents

Fig. S1	¹ H NMR spectrum of 1 in D ₂ O at 250 MHz	2
Fig. S2	¹ H NMR spectrum of 2 in D_2O at 250 MHz	3
Fig. S3	¹³ C NMR spectrum of 1 in D ₂ O at 250 MHz	4
Fig. S4	¹³ C NMR spectrum of 2 in D ₂ O at 250 MHz.	5
Fig. S5	IR spectrum of 1 (KBr disc)	6
Fig. S6	IR spectrum of 2 (KBr disc)	7
Fig. S7	High-resolution mass spectrum of 1	8
Fig. S8	High-resolution mass spectrum of 2	9
	X-Ray Crystallographic Data for 1	10
	X-Ray Crystallographic Data for 2	15

Figure S1: ¹H NMR spectrum of 1 at 250 MHz in D_2O .

Figure S2: ¹H NMR spectrum of 2 in D_2O at 250 MHz.

Figure S3: ¹³C NMR of 1 in D₂O at 250 MHz. (1,4-dioxane standard run as a separate spectrum.)

Figure S4: 13 C NMR spectrum of 2 in D₂O/1,4-dioxane at 250 MHz.

Figure S5: IR spectrum of 1 (KBr disc).

Figure S6: IR spectrum of 2 (KBr disc).

Figure S7: High-resolution mass spectrum of 1.

Figure S8: High-resolution mass spectrum of 2.

X-Ray Crystallographic Data for 1

Compound Name	phenyl β -aminobisulfonate
Empirical formula	$C_{10}H_{17}K_2NO_8S_2$
Formula weight / g·mol ⁻¹	421.56
Temperature/K	150.01(10)
Crystal system	orthorhombic
Space group	Pnma
a/Å	8.2498(3)
b/Å	22.5592(7)
c/Å	8.7439(3)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
$\gamma/^{\circ}$	90
Volume/Å ³	1627.33(9)
Ζ	4
$\rho_{calc}g/cm^3$	1.721
μ/mm^{-1}	0.877
F(000)	872.0
Crystal size/mm ³	0.3155 imes 0.188 imes 0.1822
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
2Θ range for data collection/°	6.79 to 57.556
Index ranges	$-11 \le h \le 10, -29 \le k \le 29, -11 \le l \le 10$
Reflections collected	24720
Independent reflections	2066 [$R_{int} = 0.0354$, $R_{sigma} = 0.0180$]
Data/restraints/parameters	2066/0/144
Goodness-of-fit on F ²	1.082
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0242, wR_2 = 0.0568$
Final R indexes [all data]	$R_1 = 0.0308, wR_2 = 0.0607$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.46

Table 1 Crystal data and structure refinement for 1.

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atomx		У	Z	U(eq)
K1	1647.0(4)	4826.0(2)	8058.8(3)	16.53(9)
S 1	300.1(4)	4028.6(2)	4948.1(4)	12.24(9)
N5	2585(2)	2500	3846.6(18)	14.7(3)
01	-630.5(12)	4159.8(4)	6321.3(11)	17.5(2)
091	1132.3(14)	4437.8(5)	10993.5(12)	21.0(2)
O90	672.4(12)	5899.2(4)	6449.1(11)	17.1(2)
O2	1818.6(12)	4353.0(4)	4876.8(11)	19.0(2)
C4	1710.3(17)	3051.6(6)	3596.3(16)	15.0(3)
C9	6949(3)	2500	6348(2)	19.6(4)
C7	4736.1(17)	3032.8(6)	5175.2(15)	16.3(3)
C3	805.2(18)	3266.5(6)	5026.1(15)	16.1(3)
C6	3983(2)	2500	4736(2)	13.4(4)
C8	6198.8(18)	3027.6(6)	5948.2(16)	19.3(3)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 1. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

-		1				
Aton	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
K1	17.06(16)	15.19(16)	17.34(16)	0.19(10)	-2.98(11)	0.47(11)
S 1	12.26(17)	10.53(16)	13.94(17)	0.54(11)	-0.05(11)	0.68(11)
N5	17.2(8)	9.8(7)	17.2(8)	0	0.0(6)	0
01	18.8(5)	16.6(5)	17.3(5)	-2.2(4)	2.9(4)	3.1(4)
091	16.6(5)	23.6(6)	22.6(5)	6.1(4)	3.3(4)	3.2(4)
O90	15.7(5)	19.5(5)	16.0(5)	1.8(4)	-2.2(4)	2.8(4)
O2	16.1(5)	16.0(5)	24.7(5)	0.6(4)	-0.3(4)	-4.1(4)
C4	18.4(7)	12.1(6)	14.4(6)	1.3(5)	0.4(5)	1.5(5)
C9	15.6(10)	27.5(11)	15.8(9)	0	2.1(8)	0
C7	18.4(7)	12.9(7)	17.5(7)	0.2(5)	3.0(5)	0.1(5)
C3	18.4(7)	11.6(6)	18.3(7)	2.9(5)	3.3(5)	2.0(5)
C6	15.3(9)	12.4(9)	12.5(8)	0	4.4(7)	0
C8	21.7(7)	19.1(7)	17.0(7)	-1.2(5)	3.2(6)	-4.5(6)

Table 4 Bond Lengths for 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
K1	K1 ¹	4.23906(19)	S 1	C3	1.7704(14)
K1	K1 ²	4.4188(6)	N5	C4	1.4551(15)
K1	K1 ³	4.23911(19)	N5	C47	1.4551(15)
K1	S 1	3.4452(4)	N5	C6	1.391(3)
K1	01	2.8455(10)	01	K11	2.7563(10)
K1	O1 ³	2.7563(10)	091	K1 ²	2.9500(12)
K1	091	2.7445(11)	091	K1 ⁵	3.0621(11)
K1	O91 ²	2.9500(12)	O90	S1 ⁶	1.4707(10)
K1	O91 ⁴	3.0621(12)	O2	K14	2.7495(10)
K1	O90	2.9136(10)	C4	C3	1.5348(19)
K1	02	2.9833(10)	C9	C8 ⁷	1.3860(18)
K1	O2 ⁵	2.7494(10)	C9	C8	1.3861(18)
S1	01	1.4556(10)	C7	C6	1.4066(17)
S1	O90 ⁶	1.4707(10)	C7	C8	1.383(2)
S1	02	1.4522(10)	C6	C7 ⁷	1.4067(17)

¹-1/2+X,+Y,3/2-Z; ²-X,1-Y,2-Z; ³1/2+X,+Y,3/2-Z; ⁴1/2-X,1-Y,-1/2+Z; ⁵1/2-X,1-Y,1/2+Z; ⁶-X,1-Y,1-Z; ⁷+X,1/2-Y,+Z

Table 5 Bond Angles for 1.

$\label{eq:Atom Atom Atom Angle/^{\circ}} & Atom Atom Atom Angle/^{\circ} \\$

K11	K1	K1 ²	65.082(7)	O90	K1	O91 ⁴	55.22(3)
K1 ³	K1	K1 ²	140.854(13)	O90	K1	02	81.94(3)
K11	K1	K1 ³	153.344(15)	O2 ⁵	K1	$K1^1$	125.54(2)
S 1	K1	K1 ³	97.576(11)	02	K1	K1 ²	144.02(2)
S 1	K1	K1 ²	120.063(12)	02	K1	K1 ³	74.86(2)
S 1	K1	$K1^1$	60.274(9)	O2 ⁵	K1	K1 ³	71.66(2)
O1 ³	K1	$K1^1$	146.95(2)	02	K1	K11	80.28(2)
01	K1	K1 ³	121.29(2)	O2 ⁵	K1	K1 ²	73.70(2)
O1 ³	K1	K1 ³	41.62(2)	02	K1	S1	24.80(2)
01	K1	K1 ²	95.62(2)	O2 ⁵	K1	S 1	163.08(2)
01	K1	$K1^1$	40.04(2)	O2 ⁵	K1	O1 ³	83.02(3)
O1 ³	K1	K1 ²	116.55(2)	O2 ⁵	K1	01	165.57(3)
01	K1	S 1	24.46(2)	O2 ⁵	K1	O91 ²	79.41(3)
O1 ³	K1	S 1	97.66(2)	02	K1	O91 ⁴	67.39(3)
O1 ³	K1	01	110.79(3)	O2 ⁵	K1	O91 ⁴	72.55(3)
01	K1	O91 ²	86.22(3)	O2 ⁵	K1	O90	81.18(3)
O1 ³	K1	O91 ⁴	85.65(3)	O2 ⁵	K1	02	139.32(2)
01	K1	O91 ⁴	111.51(3)	01	S 1	K1	54.03(4)

O1 ³	K1	O91 ²	152.27(3)	01	S 1	O90 ⁶	112.03(6)
O1 ³	K1	O90	140.62(3)	01	S 1	C3	106.85(6)
01	K1	O90	89.93(3)	O90 ⁶	S 1	K1	140.71(4)
O1 ³	K1	O2	87.12(3)	O90 ⁶	S 1	C3	105.54(6)
01	K1	O2	49.04(3)	O2	S 1	K1	59.50(4)
091	K1	K1 ³	111.48(3)	O2	S 1	01	112.82(6)
091	K1	K1 ²	40.82(2)	O2	S 1	O90 ⁶	112.28(6)
O91 ⁴	K1	K1 ³	44.10(2)	O2	S 1	C3	106.74(7)
O91 ⁴	K1	K1 ²	136.44(2)	C3	S 1	K1	113.63(5)
O91 ²	K1	K11	46.25(2)	C4	N5	C4 ⁷	117.55(16)
O91 ²	K1	K1 ²	37.45(2)	C6	N5	C47	119.70(8)
O91 ²	K1	K1 ³	145.19(2)	C6	N5	C4	119.70(8)
O91	K1	K1 ¹	93.73(3)	K1 ¹	01	K1	98.34(3)
O91 ⁴	K1	K11	116.50(2)	S 1	01	K1	101.51(5)
O91	K1	S 1	121.44(3)	S 1	01	K1 ¹	134.66(6)
O91 ²	K1	S 1	105.37(2)	K1	091	K1 ⁵	106.60(4)
O91 ⁴	K1	S 1	90.61(2)	K1 ²	091	K1 ⁵	89.65(3)
O91	K1	O1 ³	76.60(3)	K1	091	K1 ²	101.73(3)
O91	K1	01	103.21(3)	S1 ⁶	O90	K1	130.08(5)
O91	K1	O91 ⁴	144.80(3)	K14	02	K1	108.67(3)
O91	K1	O91 ²	78.27(3)	S 1	02	K1	95.70(5)
O91 ²	K1	O91 ⁴	108.99(4)	S 1	02	K1 ⁴	139.60(6)
O91	K1	O90	132.39(3)	N5	C4	C3	112.88(12)
O91 ²	K1	O2	120.02(3)	C8 ⁷	C9	C8	118.34(19)
O91	K1	O2 ⁵	75.26(3)	C8	C7	C6	120.78(14)
O91	K1	O2	139.93(3)	C4	C3	S 1	112.94(9)
O90	K1	K11	67.67(2)	N5	C6	C7 ⁷	121.26(9)
O90	K1	K1 ²	93.08(2)	N5	C6	C7	121.27(9)
O90	K1	K1 ³	99.04(2)	C7	C6	C7 ⁷	117.41(18)
O90	K1	S 1	87.91(2)	C7	C8	C9	121.31(14)
O90	K1	O91 ²	56.86(3)				

¹-1/2+X,+Y,3/2-Z; ²-X,1-Y,2-Z; ³1/2+X,+Y,3/2-Z; ⁴1/2-X,1-Y,-1/2+Z; ⁵1/2-X,1-Y,1/2+Z; ⁶-X,1-Y,1-Z; ⁷+X,1/2-Y,+Z

Table 6 Hydrogen Bonds for 1.

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
091	H91A	O90 ¹	0.82(2)	1.97(2)	2.7723(15)	167.1(19)
091	H91B	O90 ²	0.79(2)	2.04(2)	2.7919(15)	157(2)
¹ 1/2	-X,1-Y	7,1/2+	Z; ² -X,1-Y,2-Z			

Table 7 Torsion Angles for 1.

A	В	С	D	Angle/°	A	В	С	D	Angle/°
K1	S 1	01	$K1^1$	114.17(8)	C4 ⁴	N5	C4	C3	87.99(17)
K1	S 1	02	K1 ²	-127.85(10)	C4	N5	C6	C7 ⁴	171.25(14)
K1	S1	C3	C4	-125.91(9)	C4 ⁴	N5	C6	C74	11.5(2)
N5	C4	C3	S 1	160.85(10)	C4 ⁴	N5	C6	C7	-171.25(14)
01	S 1	O2	K1	9.10(6)	C4	N5	C6	C7	-11.5(2)
01	S 1	O2	K1 ²	-118.75(9)	C3	S 1	01	K1	107.31(6)
01	S1	C3	C4	176.59(10)	C3	S 1	01	$K1^1$	-138.52(8)
O90 ³	S 1	01	$K1^1$	-23.40(10)	C3	S 1	02	K1 ²	124.18(9)
O90 ³	S 1	01	K1	-137.56(5)	C3	S 1	02	K1	-107.97(5)
O90 ³	S 1	O2	K1	136.84(5)	C6	N5	C4	C3	-72.20(18)
O90 ³	S 1	O2	K1 ²	8.99(11)	C6	C7	C8	C9	-1.6(2)
O90 ³	S 1	C3	C4	57.18(12)	C84	C9	C8	C7	0.2(3)
O2	S 1	01	K1	-9.69(6)	C8	C7	C6	N5	-174.48(15)
O2	S 1	01	$K1^1$	104.48(8)	C8	C7	C6	C7 ⁴	2.9(3)
O2	S 1	C3	C4	-62.45(12)					

¹-1/2+X,+Y,3/2-Z; ²1/2-X,1-Y,-1/2+Z; ³-X,1-Y,1-Z; ⁴+X,1/2-Y,+Z

Table 8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 1.

Atom	X	У	z	U(eq)
H4A	954(19)	2979(7)	2783(18)	15(4)
H8	6690(20)	3400(8)	6230(20)	25(4)
H7	4260(20)	3396(8)	4945(18)	21(4)
H4B	2490(20)	3352(7)	3230(17)	17(4)
H9	7980(30)	2500	6840(30)	19(6)
H3A	1480(20)	3219(8)	5940(20)	28(5)
H3B	-200(20)	3058(8)	5186(18)	22(4)
H91A	2030(30)	4288(9)	11070(20)	32(5)
H91B	630(30)	4253(10)	11600(30)	39(6)

X-Ray Crystallographic Data for 2

2
$C_{44}H_{72}BrK_9N_4O_{37}S_8$
1937.34
150.00(10)
monoclinic
$P2_{1}/c$
17.9837(3)
13.1145(2)
32.7662(6)
90
102.8278(19)
90
7534.9(2)
4
1.708
8.075
3976.0
$0.342\times0.265\times0.101$
$CuK\alpha (\lambda = 1.54184)$
5.04 to 132.686
$\text{-18} \le h \le 20, \text{-15} \le k \le 15, \text{-38} \le l \le 36$
103432
13155 [$R_{int} = 0.1612$, $R_{sigma} = 0.0670$]
13155/0/946
1.536
$R_1 = 0.1480, wR_2 = 0.3662$
$R_1 = 0.1636, wR_2 = 0.3843$
4.27/-1.37

Table 9 Crystal data and structure refinement for 2.

Table 10 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 2. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
K3	9825.6(11)	1538.9(14)	3768.1(7)	32.6(5)
S90	4269.6(11)	8665.0(15)	3720.4(6)	20.3(5)
S69	6800.1(11)	238.3(14)	3750.5(6)	20.3(5)
K6	7318.9(11)	7388.6(14)	3701.6(6)	28.0(5)
S48	9342.0(11)	-1117.1(16)	3729.9(7)	23.9(5)
S84	5859.7(11)	3909.8(15)	4291.8(6)	20.2(4)
S42	10894.0(12)	3976.0(17)	4285.0(8)	29.9(5)
S27	11794.7(11)	114.8(17)	3668.6(6)	24.6(5)
S21	13412.5(12)	4899.8(17)	4289.0(7)	27.6(5)
S017	8424.9(12)	5273.9(16)	4102.5(7)	28.1(5)
O38	11777(3)	6166(4)	3116.1(19)	23.5(12)
O17	14238(3)	2854(4)	3055.2(19)	24.6(13)
O86	5316(3)	3075(4)	4272.9(18)	22.3(12)
O66	7872(4)	5817(5)	4286(2)	28.1(13)
O80	6744(3)	6002(5)	3074.1(18)	23.4(12)
O24	12909(3)	5785(4)	4279.2(19)	24.4(13)
O59	9267(3)	2863(5)	3098.9(19)	24.7(13)
O45	10339(4)	3189(5)	4289(2)	29.9(14)
O85	6622(3)	3544(5)	4286(2)	26.3(13)
N31	10729(4)	6539(5)	3570(2)	16.5(13)
N10	13193(4)	2454(5)	3513(2)	19.2(14)
O91	4138(3)	9625(5)	3498.3(19)	26.3(13)
O70	6641(3)	-720(4)	3521.2(19)	23.7(12)
C53	7971(5)	2758(6)	3133(3)	20.2(16)
C74	5448(5)	6113(6)	3113(3)	19.1(16)
N73	5719(4)	6407(5)	3540(2)	15.9(13)
O29	11161(4)	747(6)	3722(3)	42.8(18)
O71	6133(3)	923(5)	3699(2)	29.1(14)
O92	3597(3)	7999(5)	3652(2)	28.1(13)
C11	12945(5)	2803(6)	3095(3)	23.0(17)
O87	5874(4)	4593(5)	4645.8(17)	26.4(13)
C79	5989(5)	5862(6)	2875(3)	19.4(16)
N52	8242(4)	2474(5)	3563(2)	18.1(14)
072	7138(4)	81(5)	4195.4(19)	27.9(13)
065	9121(4)	5037(6)	4403(2)	39.8(17)
C36	10806(6)	5625(7)	2505(3)	29(2)

O30	11568(4)	-725(5)	3386(2)	33.7(15)
O22	14179(4)	5187(6)	4298(2)	41.4(18)
O50	9146(4)	-242(5)	3459(2)	35.4(16)
C32	10469(5)	6213(6)	3145(3)	18.7(16)
C33	9707(5)	6061(6)	2956(3)	24.2(18)
C13	11958(5)	3277(7)	2490(3)	28.2(19)
C37	11034(5)	5991(6)	2910(2)	18.7(16)
C57	8280(5)	3350(7)	2491(3)	26.8(19)
O93	4584(4)	8798(5)	4168(2)	35.0(15)
O49	8689(4)	-1696(5)	3772(3)	43.4(19)
C82	6072(4)	5573(7)	3812(3)	20.9(17)
C56	7523(6)	3424(7)	2305(3)	28.3(19)
C58	8514(5)	3001(6)	2896(3)	23.1(17)
C75	4671(5)	6020(6)	2921(3)	23.3(17)
C76	4444(5)	5731(6)	2505(3)	25.6(18)
C34	9498(5)	5723(6)	2538(3)	26.4(19)
C88	5169(5)	6979(6)	3730(3)	21.4(17)
C55	6976(5)	3164(6)	2525(3)	25.7(19)
O44	10973(4)	4605(6)	4674(2)	40.6(17)
C16	13496(5)	3038(6)	2860(3)	22.5(17)
C78	5734(6)	5524(7)	2462(3)	26.8(19)
C40	11066(4)	5708(6)	3849(3)	18.9(16)
C54	7206(5)	2854(6)	2943(3)	23.4(17)
C15	13267(5)	3420(6)	2453(3)	25.0(18)
O23	13376(4)	4177(6)	4624(2)	36.0(15)
C14	12505(6)	3540(7)	2270(3)	32(2)
C19	13555(5)	3265(7)	3798(3)	21.8(17)
C18	14814(5)	3071(7)	2832(3)	28.8(19)
C61	8579(5)	3330(7)	3829(3)	23.5(17)
C62	7998(5)	4119(6)	3906(3)	23.4(17)
O43	11630(5)	3652(7)	4242(3)	60(3)
C67	7698(5)	1914(6)	3758(3)	23.0(17)
C83	5531(5)	4676(6)	3840(3)	21.9(17)
C12	12177(5)	2944(6)	2897(3)	24.6(18)
C20	13041(5)	4197(7)	3829(3)	27.9(19)
C35	10050(6)	5502(7)	2322(3)	30(2)
C77	4989(5)	5459(6)	2278(3)	26.6(18)
C47	9944(5)	-1890(6)	3503(3)	20.8(17)
O28	12247(4)	-303(7)	4067(2)	45.9(19)
C89	4978(5)	8021(6)	3519(3)	20.1(16)

C60	9833(5)	3104(7)	2869(3)	28.6(19)
C41	10506(5)	4838(7)	3882(3)	24.6(18)
C81	7309(5)	5805(7)	2833(3)	25.0(18)
C46	10170(5)	-2869(6)	3748(2)	19.3(16)
C39	12353(5)	5920(7)	2900(3)	26.1(18)
C25	12633(5)	1863(7)	3687(3)	26.0(18)
C26	12428(5)	879(6)	3452(3)	24.3(17)
O64	8568(4)	5812(6)	3737(2)	39.1(16)
C68	7494(5)	884(6)	3545(2)	17.5(15)
O51	9810(5)	-803(7)	4138(3)	54(2)
K8	5179.5(11)	6295.9(15)	4957.6(6)	27.8(5)
K9	4739.6(10)	11499.2(14)	3713.5(6)	25.8(4)
K4	9799.1(14)	3777(2)	5037.7(8)	49.4(6)
K2	12247(5)	7558(10)	3858(10)	25(2)
K5	7542.0(11)	4766.5(16)	4967.1(6)	28.9(5)
K1	11172.7(15)	-85(2)	4577.0(7)	46.1(6)
K7	6527.0(12)	1546.3(15)	4659.8(6)	33.1(5)
Br1	8308.6(7)	2448.4(9)	5140.0(4)	35.1(4)
O102	11014(4)	2592(6)	5334(3)	47(2)
O104	3854(4)	7487(5)	4662(2)	32.3(15)
O105	6957(6)	8043(7)	4438(3)	62(2)
O100	11309(5)	22(8)	5398(3)	59(2)
O101	9966(7)	1243(7)	4621(4)	74(3)
O103	5699(5)	8220(8)	4862(3)	68(3)
O106	4998(6)	10764(7)	4503(3)	66(3)
O107	11918(7)	1892(9)	4776(4)	89(4)
O108	13168(10)	190(12)	4818(4)	135(7)
Br1A	8061(6)	2165(8)	5279(3)	35.1(4)
K2A	12259(19)	7490(30)	3765(14)	25(2)

Table 11 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 2. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

-		-		•		
Aton	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
K3	22.2(10)	16.8(10)	56.2(12)	-5.3(8)	3.1(8)	4.9(7)
S90	17(1)	13.2(9)	31.3(10)	-0.1(7)	6.9(8)	2.7(7)
S69	15.8(10)	11.8(9)	33.9(10)	-1.2(7)	6.7(8)	-0.2(7)
K6	22.7(10)	14.2(9)	47.0(11)	2.9(7)	7.5(8)	0.0(7)
S48	17(1)	18.5(10)	37.0(11)	-0.3(8)	8.0(8)	5.4(8)
S84	14.4(10)	15.4(10)	29.9(10)	1.9(7)	3.3(7)	1.5(7)
S42	15.5(10)	21.7(11)	51.3(13)	14.5(9)	4.9(9)	1.0(8)

S27	14.3(10)	28.7(11)	31.4(10)	0.5(8)	6.5(8)	-2.8(8)
S21	18.6(11)	22.0(11)	40.9(12)	-10.9(9)	3.7(8)	0.9(8)
S017	19.2(11)	15(1)	47.7(12)	-4.4(8)	2.0(9)	-1.6(8)
O38	16(3)	20(3)	37(3)	1(2)	11(2)	1(2)
017	19(3)	19(3)	38(3)	-1(2)	9(2)	1(2)
086	17(3)	15(3)	34(3)	1(2)	4(2)	-4(2)
066	28(3)	14(3)	42(3)	-2(2)	9(3)	3(2)
O80	14(3)	26(3)	32(3)	0(2)	8(2)	5(2)
O24	14(3)	17(3)	41(3)	-5(2)	4(2)	3(2)
O59	15(3)	23(3)	37(3)	1(2)	9(2)	-1(2)
O45	23(3)	20(3)	46(4)	6(3)	6(3)	-8(3)
085	10(3)	26(3)	45(3)	9(3)	9(2)	4(2)
N31	8(3)	18(3)	25(3)	1(3)	6(2)	-1(2)
N10	15(3)	12(3)	31(3)	-3(3)	6(3)	-1(3)
091	23(3)	17(3)	41(3)	5(2)	11(2)	12(2)
O70	20(3)	11(3)	40(3)	-7(2)	6(2)	-5(2)
C53	22(4)	10(4)	28(4)	-3(3)	6(3)	-1(3)
C74	19(4)	8(4)	31(4)	5(3)	7(3)	3(3)
N73	11(3)	13(3)	25(3)	2(2)	6(2)	5(2)
O29	20(3)	44(4)	68(5)	-19(4)	19(3)	-4(3)
O71	17(3)	22(3)	49(4)	-1(3)	9(3)	5(2)
092	15(3)	22(3)	49(4)	5(3)	11(3)	2(2)
C11	21(4)	17(4)	31(4)	-5(3)	5(3)	1(3)
087	28(3)	28(3)	23(3)	-5(2)	5(2)	1(3)
C79	16(4)	13(4)	28(4)	1(3)	4(3)	1(3)
N52	11(3)	17(3)	26(3)	-3(3)	5(3)	-7(3)
O72	28(3)	21(3)	37(3)	4(2)	12(3)	-6(2)
065	29(4)	35(4)	50(4)	-10(3)	-5(3)	3(3)
C36	42(6)	14(4)	37(5)	2(3)	21(4)	3(4)
O30	32(4)	22(3)	52(4)	-4(3)	19(3)	-8(3)
O22	20(3)	39(4)	64(5)	-21(3)	6(3)	6(3)
O50	30(4)	14(3)	67(4)	9(3)	19(3)	10(3)
C32	20(4)	10(4)	28(4)	2(3)	10(3)	5(3)
C33	16(4)	19(4)	38(5)	0(3)	7(3)	3(3)
C13	21(4)	21(4)	39(5)	-7(4)	-2(4)	4(4)
C37	18(4)	12(4)	28(4)	4(3)	8(3)	2(3)
C57	31(5)	18(4)	35(5)	0(3)	15(4)	0(4)
093	36(4)	30(4)	39(4)	-6(3)	8(3)	1(3)
O49	28(4)	25(4)	86(6)	15(3)	31(4)	5(3)
C82	7(4)	27(5)	29(4)	0(3)	4(3)	2(3)

C56	40(5)	16(4)	28(4)	-2(3)	4(4)	-7(4)
C58	21(4)	11(4)	40(5)	-5(3)	14(3)	-6(3)
C75	21(4)	10(4)	40(5)	4(3)	9(3)	-4(3)
C76	24(5)	12(4)	37(5)	6(3)	0(3)	-6(3)
C34	23(4)	15(4)	36(5)	2(3)	-4(4)	-4(3)
C88	25(4)	11(4)	31(4)	-2(3)	11(3)	-1(3)
C55	19(4)	15(4)	38(5)	-3(3)	-5(3)	7(3)
O44	44(4)	43(4)	31(3)	1(3)	2(3)	-13(3)
C16	26(5)	11(4)	31(4)	-2(3)	6(3)	-3(3)
C78	35(5)	19(4)	28(4)	1(3)	11(4)	-1(4)
C40	10(4)	13(4)	34(4)	0(3)	5(3)	0(3)
C54	20(4)	15(4)	35(4)	-5(3)	4(3)	-1(3)
C15	33(5)	15(4)	29(4)	2(3)	11(4)	0(3)
O23	38(4)	38(4)	30(3)	0(3)	3(3)	10(3)
C14	50(6)	12(4)	30(5)	-6(3)	-2(4)	0(4)
C19	15(4)	23(4)	28(4)	-5(3)	4(3)	1(3)
C18	23(5)	22(5)	46(5)	-10(4)	16(4)	-2(4)
C61	17(4)	20(4)	34(4)	-3(3)	7(3)	1(3)
C62	22(4)	12(4)	38(5)	-6(3)	9(3)	-5(3)
O43	30(4)	44(5)	109(7)	39(5)	21(4)	14(3)
C67	30(5)	8(4)	32(4)	-3(3)	9(3)	-7(3)
C83	22(4)	12(4)	29(4)	2(3)	1(3)	1(3)
C12	21(4)	16(4)	36(4)	-1(3)	6(3)	1(3)
C20	30(5)	28(5)	23(4)	-3(3)	1(3)	14(4)
C35	39(6)	17(4)	30(4)	-2(3)	1(4)	0(4)
C77	35(5)	10(4)	32(4)	1(3)	2(4)	-2(3)
C47	14(4)	10(4)	39(4)	-2(3)	8(3)	2(3)
O28	39(4)	59(5)	37(4)	9(3)	3(3)	-6(4)
C89	16(4)	8(4)	38(4)	1(3)	10(3)	5(3)
C60	16(4)	28(5)	47(5)	-8(4)	20(4)	-5(4)
C41	16(4)	18(4)	38(5)	6(3)	1(3)	-4(3)
C81	18(4)	17(4)	44(5)	5(3)	15(4)	2(3)
C46	22(4)	9(4)	28(4)	2(3)	7(3)	-1(3)
C39	21(4)	21(4)	40(5)	7(4)	16(4)	0(3)
C25	30(5)	16(4)	32(4)	-4(3)	8(4)	3(3)
C26	24(4)	14(4)	36(4)	1(3)	10(3)	-1(3)
064	33(4)	39(4)	49(4)	8(3)	18(3)	-2(3)
C68	16(4)	6(4)	31(4)	1(3)	6(3)	-4(3)
O51	51(5)	51(5)	57(5)	-24(4)	4(4)	22(4)
K8	23.7(10)	25.7(10)	33.2(10)	1.2(7)	4.8(7)	6.0(7)

K9	18.8(9)	17.4(9)	40(1)	-1.9(7)	4.0(7)	3.2(7)
K4	34.4(13)	66.0(17)	47.2(13)	4.9(11)	7.7(10)	3.7(11)
K2	16.5(10)	16.5(17)	43(7)	0(3)	8(2)	-0.8(10)
K5	22.2(10)	28.7(10)	34.1(10)	-2.2(7)	3.0(7)	-0.3(7)
K1	47.2(14)	50.0(14)	42.2(12)	0(1)	12.1(10)	2.9(11)
K7	39.3(12)	24.2(10)	34.7(10)	-0.3(7)	5.5(8)	4.5(8)
Br1	31.6(7)	22.3(6)	48.0(7)	0.1(5)	1.2(5)	2.7(5)
O102	32(4)	39(4)	66(5)	-32(4)	3(3)	4(3)
O104	44(4)	19(3)	33(3)	-3(2)	7(3)	-13(3)
O105	76(6)	43(5)	81(6)	25(4)	46(5)	21(4)
O100	56(5)	69(6)	48(5)	-8(4)	5(4)	-3(4)
O101	85(7)	42(5)	96(7)	-1(5)	26(6)	-1(5)
O103	43(5)	61(6)	87(6)	34(5)	-11(4)	-11(4)
O106	102(8)	40(5)	51(5)	-3(4)	6(5)	-27(5)
O107	68(7)	73(8)	113(9)	13(7)	-9(6)	0(6)
O108	192(16)	119(12)	59(7)	37(7)	-48(8)	-82(12)
Br1A	31.6(7)	22.3(6)	48.0(7)	0.1(5)	1.2(5)	2.7(5)
K2A	16.5(10)	16.5(17)	43(7)	0(3)	8(2)	-0.8(10)

Table 12 Bond Lengths for 2.

		0			
Atom	Atom	Length/Å	Atom	Atom	Leng
K3	059	2.802(6)	O71	K94	2.628
K3	O45	2.783(7)	O71	K7	3.178
K3	O29	2.651(7)	O92	K2 ⁶	2.723
K3	N52	3.036(7)	O92	$K2A^6$	2.60(
K3	O50	2.725(7)	C11	C16	1.416
K3	O101	2.777(12)	C11	C12	1.402
S90	091	1.447(6)	O87	K8	2.856
S90	O92	1.469(6)	O87	K8 ²	2.781
S90	O93	1.460(7)	O87	K5	2.959
S90	C89	1.773(8)	C79	C78	1.402
S69	O70	1.460(6)	N52	C61	1.468
S69	071	1.478(6)	N52	C67	1.477
S69	O72	1.464(7)	O72	K7	2.821
S69	C68	1.762(8)	065	K4	2.723
S69	K7	3.565(3)	065	K4 ³	2.823
K6	066	2.838(6)	C36	C37	1.384
K6	080	2.767(6)	C36	C35	1.367
K6	O70 ¹	2.769(6)	O30	K2 ⁴	2.849
K6	O491	2.704(7)	O30	$K2A^4$	2.81(

gth/Å

O71	K94	2.628(6)
O71	K7	3.178(7)
092	K2 ⁶	2.723(18)
O92	K2A ⁶	2.60(4)
C11	C16	1.416(13)
C11	C12	1.402(13)
O87	K8	2.856(6)
O87	K8 ²	2.781(6)
O87	K5	2.959(6)
C79	C78	1.402(12)
N52	C61	1.468(11)
N52	C67	1.477(10)
O72	K7	2.821(7)
065	K4	2.723(8)
065	K4 ³	2.823(7)
C36	C37	1.384(13)
C36	C35	1.367(15)
O30	K2 ⁴	2.849(13)
O30	$K2A^4$	2.81(3)

K6	064	3.036(8)	O22	K8 ³	3.132(9)
K6	O105	2.770(9)	O22	K8 ⁷	2.880(7)
S48	O50	1.445(7)	C32	C33	1.387(12)
S48	O49	1.430(7)	C32	C37	1.434(11)
S48	C47	1.763(8)	C33	C34	1.408(13)
S48	O51	1.473(8)	C13	C14	1.386(15)
S84	086	1.460(6)	C13	C12	1.373(13)
S84	085	1.457(6)	C57	C56	1.366(14)
S84	O87	1.461(6)	C57	C58	1.379(13)
S84	C83	1.778(8)	O49	K6 ⁴	2.705(7)
S84	K8 ²	3.414(3)	C82	C83	1.541(11)
S84	K5	3.513(3)	C56	C55	1.386(14)
S84	K7	3.444(3)	C75	C76	1.385(13)
S42	O45	1.438(6)	C76	C77	1.402(14)
S42	O44	1.497(8)	C34	C35	1.373(14)
S42	O43	1.428(8)	C88	C89	1.535(11)
S42	C41	1.760(9)	C55	C54	1.400(13)
S42	K4	3.491(3)	O44	K4 ³	2.812(8)
S42	K5 ³	3.684(3)	O44	K4	2.858(8)
S27	O29	1.451(7)	O44	K5 ³	2.794(7)
S27	O30	1.438(7)	C16	C15	1.397(12)
S27	O28	1.481(8)	C78	C77	1.345(14)
S27	C26	1.778(9)	C40	C41	1.543(11)
S27	K2 ⁴	3.473(11)	C40	K2	3.220(12)
S27	K1	3.414(3)	C40	K2A	3.23(3)
S27	K2A ⁴	3.54(3)	C15	C14	1.376(14)
S21	O24	1.468(6)	O23	K8 ³	2.726(7)
S21	O22	1.423(8)	O23	K5 ³	2.723(7)
S21	O23	1.464(7)	C19	C20	1.549(12)
S21	C20	1.768(9)	C19	K9 ⁵	3.200(8)
S21	K8 ³	3.491(3)	C61	C62	1.531(12)
S21	K5 ³	3.307(3)	O43	K5 ³	3.395(12)
S017	066	1.457(7)	C67	C68	1.527(11)
S017	065	1.444(7)	C47	C46	1.522(11)
S017	C62	1.755(8)	O28	K24	2.89(2)
S017	O64	1.461(7)	O28	K1	2.836(8)
S017	K5	3.604(3)	O28	$K2A^4$	3.06(4)
O38	C37	1.377(10)	C46	N31 ⁴	1.488(10)
O38	C39	1.416(10)	C39	K2A	3.54(5)
O38	K2	3.01(3)	C25	C26	1.504(12)

O38	K2A	2.73(4)	051	K1	2.719(9)
O17	C16	1.367(11)	K8	O87 ²	2.781(6)
O17	C18	1.423(11)	K8	O22 ⁶	2.880(7)
O17	K9 ⁵	2.786(6)	K8	O23 ³	2.726(7)
086	K8 ²	2.971(6)	K8	O104	2.835(7)
086	K94	2.804(6)	K8	O103	2.734(9)
086	K7	3.024(6)	K9	O17 ⁸	2.786(6)
066	K5	2.797(7)	K9	O71 ¹	2.628(6)
080	C79	1.382(10)	K9	O106	2.704(9)
O80	C81	1.444(10)	K4	O65 ³	2.823(7)
O24	K2	2.829(12)	K4	O44 ³	2.812(8)
O24	K5 ³	2.858(6)	K4	O102	2.681(8)
O24	K2A	2.89(4)	K2	O92 ⁷	2.723(18)
059	C58	1.382(11)	K2	O30 ¹	2.849(13)
059	C60	1.429(10)	K2	O28 ¹	2.89(2)
O45	K4	2.936(7)	K5	O24 ³	2.858(6)
085	K5	2.941(7)	K5	O44 ³	2.794(7)
085	K7	2.914(6)	K5	O23 ³	2.723(7)
N31	C32	1.433(11)	K1	O100	2.650(8)
N31	C40	1.465(10)	K1	O101	2.811(11)
N31	C46 ¹	1.488(10)	K1	O107	2.925(13)
N31	K2	2.998(13)	K7	O104 ²	2.773(7)
N31	K2A	2.96(3)	K7	O1064	2.873(11)
N10	C11	1.418(11)	K7	O1089	2.828(13)
N10	C19	1.470(10)	Br1	K2 ³	3.64(3)
N10	C25	1.482(11)	Br1	K19	3.309(3)
N10	K9 ⁵	2.987(7)	O104	K7 ²	2.773(7)
O91	K9	2.715(7)	O106	$K7^1$	2.873(11)
O70	K64	2.769(6)	O108	K79	2.828(13)
C53	N52	1.433(11)	Br1A	K19	3.044(9)
C53	C58	1.412(12)	Br1A	K2A ³	3.34(5)
C53	C54	1.385(12)	K2A	S27 ¹	3.54(3)
C74	N73	1.429(11)	K2A	O92 ⁷	2.60(4)
C74	C79	1.414(12)	K2A	O30 ¹	2.81(3)
C74	C75	1.406(12)	K2A	O28 ¹	3.06(4)
N73	C82	1.463(10)	K2A	K1 ¹	4.83(4)
N73	C88	1.485(10)	K2A	Br1A ³	3.34(5)
O29	K1	3.002(9)			

¹+X,1+Y,+Z; ²1-X,1-Y,1-Z; ³2-X,1-Y,1-Z; ⁴+X,-1+Y,+Z; ⁵1+X,-1+Y,+Z; ⁶-1+X,+Y,+Z; ⁷1+X,+Y,+Z; ⁸-1+X,1+Y,+Z; ⁹2-X,-Y,1-Z

 Table 13 Bond Angles for 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O59	K3	N52	54.60(17)	C33	C32	C37	118.6(8)
O45	K3	O59	90.60(19)	C32	C33	C34	120.2(8)
O45	K3	N52	89.38(19)	C12	C13	C14	120.0(8)
O29	K3	O59	111.7(2)	O38	C37	C36	125.3(8)
O29	K3	O45	99.1(2)	O38	C37	C32	115.4(7)
O29	K3	N52	164.3(2)	C36	C37	C32	119.4(8)
O29	K3	O50	88.9(2)	C56	C57	C58	120.9(8)
O29	K3	O101	97.0(3)	S48	049	K6 ⁴	168.3(5)
O50	K3	059	100.8(2)	N73	C82	K6	67.2(4)
O50	K3	O45	162.7(2)	N73	C82	C83	114.4(6)
O50	K3	N52	86.71(19)	C83	C82	K6	175.0(6)
O50	K3	O101	100.8(3)	C57	C56	C55	120.2(8)
O101	K3	O59	144.2(3)	O59	C58	C53	115.4(8)
O101	K3	O45	63.1(3)	C57	C58	O59	124.3(8)
O101	K3	N52	98.7(3)	C57	C58	C53	120.3(8)
O91	S90	O92	113.8(4)	C76	C75	C74	120.7(8)
O91	S90	O93	112.6(4)	C75	C76	C77	120.3(8)
O91	S90	C89	106.2(4)	C35	C34	C33	120.0(8)
092	S90	C89	107.1(4)	N73	C88	C89	111.4(6)
093	S90	O92	110.3(4)	C56	C55	C54	119.4(8)
O93	S90	C89	106.3(4)	S42	O44	K4	101.9(3)
O70	S69	O71	113.7(4)	S42	O44	K4 ³	137.8(4)
O70	S69	O72	112.4(4)	S42	O44	K5 ³	114.9(4)
O70	S69	C68	107.0(4)	K4 ³	O44	K4	71.4(2)
O70	S69	K7	142.8(3)	K5 ³	O44	K4 ³	97.6(2)
O71	S69	C68	106.9(4)	K5 ³	O44	K4	131.4(3)
O71	S69	K7	62.9(3)	O17	C16	C11	115.8(7)
O72	S69	O71	110.3(4)	O17	C16	C15	124.0(8)
O72	S69	C68	106.0(4)	C15	C16	C11	120.2(8)
O72	S69	K7	48.7(3)	C77	C78	C79	122.2(8)
C68	S69	K7	109.2(3)	N31	C40	C41	114.0(6)
O66	K6	O64	48.26(18)	N31	C40	K2	68.1(5)
O80	K6	O66	92.38(18)	N31	C40	K2A	66.4(7)
O80	K6	O70 ¹	110.83(18)	C41	C40	K2	175.4(8)
O80	K6	O64	74.47(19)	C41	C40	K2A	178.6(10)
O80	K6	O105	136.8(3)	C53	C54	C55	121.0(8)
O70 ¹	K6	O66	150.01(19)	C14	C15	C16	120.7(9)
O70 ¹	K6	O64	154.83(19)	S21	O23	K8 ³	109.1(4)

O70 ¹	K6	O105	74.4(2)	S21	O23	K5 ³	100.0(3)
O491	K6	066	95.1(2)	K5 ³	O23	K8 ³	118.9(2)
O49 ¹	K6	O80	122.6(2)	C15	C14	C13	119.9(9)
O49 ¹	K6	O70 ¹	88.29(19)	N10	C19	C20	115.2(7)
O491	K6	O64	69.3(2)	N10	C19	K9 ⁵	68.3(4)
O49 ¹	K6	O105	100.0(3)	C20	C19	K9 ⁵	174.2(6)
O105	K6	066	75.7(2)	N52	C61	K3	67.3(4)
O105	K6	O64	119.5(2)	N52	C61	C62	114.0(7)
O50	S48	K3	43.5(3)	C62	C61	K3	173.7(6)
O50	S48	C47	106.6(4)	C61	C62	S017	112.6(6)
O50	S48	051	110.4(5)	S42	O43	K5 ³	90.1(5)
O49	S48	K3	135.2(3)	N52	C67	C68	110.9(7)
O49	S48	O50	112.8(4)	C82	C83	S84	112.6(6)
O49	S48	C47	109.3(4)	C13	C12	C11	122.1(8)
O49	S48	O51	112.1(5)	C19	C20	S21	110.4(6)
C47	S48	K3	114.0(3)	C36	C35	C34	120.8(8)
O51	S48	K3	67.1(4)	C78	C77	C76	119.3(8)
051	S48	C47	105.3(4)	C46	C47	S48	112.3(6)
086	S84	O87	112.8(4)	S27	O28	K2 ⁴	100.3(6)
086	S84	C83	107.0(4)	S27	O28	K1	99.7(4)
086	S84	K8 ²	60.2(2)	S27	O28	$K2A^4$	96.2(8)
086	S84	K5	137.9(2)	K1	O28	K2 ⁴	105.9(5)
086	S84	K7	61.2(2)	K1	O28	$K2A^4$	109.9(8)
085	S84	086	112.1(4)	C88	C89	S90	111.4(6)
085	S84	O87	111.2(4)	C40	C41	S42	111.8(6)
085	S84	C83	108.3(4)	O80	C81	K6	47.8(4)
085	S84	K8 ²	130.6(3)	N31 ⁴	C46	C47	110.9(6)
085	S84	K5	55.4(3)	O38	C39	K2A	45.3(7)
085	S84	K7	56.8(2)	N10	C25	C26	111.3(7)
O87	S84	C83	105.0(4)	C25	C26	S27	112.7(6)
O87	S84	K8 ²	52.6(3)	S017	O64	K6	95.6(3)
O87	S84	K5	56.1(3)	C67	C68	S69	111.6(6)
O87	S84	K7	109.3(3)	S48	O51	K3	88.6(4)
C83	S84	K8 ²	120.7(3)	S48	051	K1	147.5(5)
C83		17.5	115 1(2)	K1	O51	K3	78.0(2)
000	S84	K5	115.1(5)				
C83	S84 S84	К5 К7	145.7(3)	O87 ²	K8	087	103.71(16)
C83 K8 ²	S84 S84 S84	K5 K7 K5	145.7(3) 95.98(7)	087 ² 087 ²	K8 K8	O87 O22 ⁶	103.71(16) 76.2(2)
C83 K8 ² K8 ²	S84 S84 S84 S84	K5 K7 K5 K7	145.7(3) 95.98(7) 83.15(6)	087 ² 087 ² 087	K8 K8 K8	087 022 ⁶ 022 ⁶	103.71(16) 76.2(2) 65.60(18)
C83 K8 ² K8 ² K7	 S84 S84 S84 S84 S84 S84 	K5 K7 K5 K7 K5	145.7(3) 95.98(7) 83.15(6) 83.27(6)	087 ² 087 ² 087 087 087 ²	K8 K8 K8 K8	087 022 ⁶ 022 ⁶ 0104	103.71(16) 76.2(2) 65.60(18) 77.39(19)

O45	S42	C41	107.9(4)	O23 ³	K8	O87	63.76(19)
O45	S42	K4	55.9(3)	O23 ³	K8	O22 ⁶	129.0(2)
O45	S42	K5 ³	138.1(3)	O23 ³	K8	O104	158.8(2)
O44	S42	C41	103.4(4)	O23 ³	K8	O103	87.5(3)
O44	S42	K4	53.2(3)	O104	K8	O87	135.24(18)
O44	S42	K5 ³	43.4(3)	O104	K8	O22 ⁶	71.57(19)
O43	S42	O45	116.6(5)	O103	K8	O87 ²	136.6(3)
O43	S42	O44	109.5(6)	O103	K8	O87	119.5(3)
O43	S42	C41	109.8(5)	O103	K8	O22 ⁶	123.5(3)
O43	S42	K4	136.9(4)	O103	K8	O104	74.7(2)
O43	S42	K5 ³	67.1(5)	O91	K9	O17 ⁸	109.54(19)
C41	S42	K4	112.7(3)	O71 ¹	K9	O17 ⁸	108.4(2)
C41	S42	K5 ³	109.2(3)	O71 ¹	K9	091	93.52(19)
K4	S42	K5 ³	91.75(8)	O711	K9	O106	87.3(3)
O29	S27	O28	113.5(5)	O106	K9	O17 ⁸	157.8(3)
O29	S27	C26	108.4(4)	O106	K9	091	84.2(2)
O29	S27	K24	133.5(5)	O65 ³	K4	O45	112.3(2)
O29	S27	K1	61.4(3)	065	K4	O45	72.3(2)
O29	S27	K2A ⁴	136.1(7)	065	K4	O65 ³	106.8(2)
O30	S27	O29	113.4(4)	065	K4	O44 ³	68.2(2)
O30	S27	O28	107.8(5)	O65 ³	K4	O44	66.2(2)
O30	S27	C26	106.9(4)	065	K4	O44	72.4(2)
O30	S27	K2 ⁴	53.0(6)	O44 ³	K4	O45	139.4(2)
O30	S27	K1	113.7(3)	O44	K4	O45	48.63(19)
O30	S27	K2A ⁴	48.8(8)	O44 ³	K4	O65 ³	71.7(2)
O28	S27	C26	106.5(4)	O44 ³	K4	O44	108.6(2)
O28	S27	K2 ⁴	54.9(6)	O102	K4	O45	75.9(2)
O28	S27	K1	55.0(3)	O102	K4	O65 ³	72.3(2)
O28	S27	K2A ⁴	59.2(8)	O102	K4	065	145.0(3)
C26	S27	K2 ⁴	118.0(4)	O102	K4	O44 ³	137.6(2)
C26	S27	K1	138.9(3)	O102	K4	O44	75.7(3)
C26	S27	K2A ⁴	115.1(7)	O24	K2	O38	84.7(5)
K1	S27	K2 ⁴	83.1(5)	O24	K2	N31	92.4(3)
K1	S27	K2A ⁴	87.9(7)	O24	K2	O30 ¹	176.4(13)
O24	S21	C20	106.2(4)	O24	K2	O28 ¹	134.8(11)
O24	S21	K8 ³	135.9(3)	N31	K2	O38	53.3(4)
O24	S21	K5 ³	59.5(3)	O92 ⁷	K2	O38	92.0(10)
O22	S21	O24	112.4(4)	O92 ⁷	K2	O24	89.6(4)
O22	S21	O23	111.1(5)	O92 ⁷	K2	N31	144.7(13)
O22	S21	C20	109.7(4)	O92 ⁷	K2	O30 ¹	89.8(5)

O22	S21	K8 ³	63.7(3)	O92 ⁷	K2	O28 ¹	84.2(3)
O22	S21	K5 ³	127.5(3)	O30 ¹	K2	O38	91.8(8)
O23	S21	O24	113.4(4)	O30 ¹	K2	N31	86.0(4)
O23	S21	C20	103.4(4)	O30 ¹	K2	O28 ¹	48.6(3)
O23	S21	K8 ³	47.5(3)	O281	K2	O38	140.1(8)
O23	S21	K5 ³	54.2(3)	O28 ¹	K2	N31	117.4(5)
C20	S21	K8 ³	116.5(3)	066	K5	O24 ³	164.90(18)
C20	S21	K5 ³	122.6(3)	066	K5	085	81.15(18)
K5 ³	S21	K8 ³	87.25(7)	066	K5	O87	97.59(18)
K6	S017	K5	97.39(7)	O24 ³	K5	085	107.35(18)
066	S017	K6	51.9(3)	O24 ³	K5	O87	80.11(17)
066	S017	C62	106.9(4)	085	K5	O87	48.16(16)
066	S017	O64	111.2(4)	O44 ³	K5	066	80.7(2)
066	S017	K5	46.0(3)	O44 ³	K5	O24 ³	97.99(19)
065	S017	K6	139.6(3)	O44 ³	K5	085	143.6(2)
065	S017	066	113.0(4)	O44 ³	K5	O87	166.3(2)
065	S017	C62	107.9(4)	O23 ³	K5	066	113.6(2)
065	S017	O64	112.3(5)	O23 ³	K5	O24 ³	52.03(18)
065	S017	K5	83.7(3)	O23 ³	K5	085	110.5(2)
C62	S017	K6	112.4(3)	O23 ³	K5	O87	62.41(19)
C62	S017	K5	84.1(3)	O23 ³	K5	O44 ³	105.7(2)
O64	S017	K6	59.8(3)	O28	K1	O29	49.6(2)
O64	S017	C62	104.9(4)	O28	K1	O107	83.2(4)
O64	S017	K5	157.2(3)	O51	K1	O29	79.3(2)
C37	O38	C39	117.0(7)	O51	K1	O28	107.8(2)
C37	O38	K2	124.5(5)	O51	K1	O101	68.1(3)
C37	O38	K2A	126.4(9)	O51	K1	O107	137.7(3)
C39	O38	K2	115.9(6)	O100	K1	O29	155.2(3)
C39	O38	K2A	113.2(9)	O100	K1	O28	133.0(3)
C16	O17	C18	118.1(7)	O100	K1	O51	115.1(3)
C16	O17	K9 ⁵	126.1(5)	O100	K1	O101	79.2(3)
C18	O17	K9 ⁵	112.2(5)	O100	K1	O107	78.0(4)
S84	086	K8 ²	94.6(3)	O101	K1	O29	88.7(3)
S84	086	K9 ⁴	136.7(3)	O101	K1	O28	136.7(3)
S84	086	K7	93.8(3)	O101	K1	O107	76.1(3)
K8 ²	086	K7	98.75(17)	O107	K1	O29	78.1(3)
K9 ⁴	O86	K8 ²	128.5(2)	085	K7	O86	48.06(16)
K94	O86	K7	84.99(16)	O72	K7	O86	123.79(18)
S017	066	K6	104.2(3)	O72	K7	085	108.64(18)
S017	066	K5	111.9(3)	O72	K7	O1064	97.6(2)

K5	066	K6	142.3(2)	O72	K7	O1089	74.4(4)
C79	O80	K6	127.2(5)	O104 ²	K7	086	75.50(19)
C79	O80	C81	117.1(6)	O104 ²	K7	085	88.49(18)
C81	O80	K6	109.4(5)	O104 ²	K7	O72	159.8(2)
S21	O24	K2	148.4(7)	O104 ²	K7	O1064	84.8(2)
S21	O24	K5 ³	94.2(3)	O104 ²	² K7	O1089	86.2(4)
S21	O24	K2A	142.5(10)	O1064	K7	086	65.8(2)
K2	O24	K5 ³	117.4(7)	O1064	K7	085	112.9(2)
K5 ³	O24	K2A	123.0(9)	O1089	[°] K7	086	144.3(4)
C58	059	K3	126.9(5)	O1089	'K7	085	163.1(3)
C58	059	C60	117.0(7)	O1089	'K7	O1064	82.5(4)
C60	059	K3	112.0(5)	K4	Br1	K2 ³	119.2(2)
K3	O45	K4	126.2(2)	K4	Br1	K5	79.30(7)
S42	O45	K3	133.6(4)	K4	Br1	K19	109.92(7)
S42	O45	K4	100.2(3)	K4	Br1	K7	146.49(7)
S84	085	K5	100.5(3)	K5	Br1	K2 ³	88.26(18)
S84	085	K7	98.4(3)	K5	Br1	K7	85.88(5)
K7	085	K5	104.3(2)	K19	Br1	K2 ³	82.04(19)
C32	N31	C40	112.7(6)	K19	Br1	K5	169.03(8)
C32	N31	C46 ¹	115.8(6)	K19	Br1	K7	88.97(6)
C32	N31	K2	121.1(8)	K7	Br1	K2 ³	89.9(2)
C32	N31	K2A	115.0(10)	K7 ²	O104	K8	108.5(2)
C40	N31	C46 ¹	111.4(6)	K3	O101	K1	86.2(3)
C40	N31	K2	85.0(5)	K9	O106	K71	89.8(3)
C40	N31	K2A	86.7(8)	K19	Br1A	K5	165.1(5)
C46 ¹	N31	K2	106.9(7)	K19	Br1A	K7	99.8(3)
C46 ¹	N31	K2A	111.8(9)	K19	Br1A	$K2A^3$	98.2(7)
C11	N10	C19	112.4(7)	K7	Br1A	K5	85.8(2)
C11	N10	C25	116.4(7)	K7	Br1A	K2A ³	109.3(7)
C11	N10	K9 ⁵	115.2(5)	K2A ³	Br1A	K5	92.9(6)
C19	N10	C25	112.1(6)	S27 ¹	K2A	C39	123.1(12)
C19	N10	K9 ⁵	84.5(4)	S27 ¹	K2A	$K1^1$	45.0(5)
C25	N10	K9 ⁵	112.0(5)	O38	K2A	S27 ¹	121.3(13)
S90	091	K9	130.2(4)	O38	K2A	O24	88.8(10)
S69	O70	K6 ⁴	129.4(3)	O38	K2A	N31	56.3(7)
C58	C53	N52	118.3(7)	O38	K2A	O30 ¹	98.8(13)
C54	C53	N52	123.5(8)	O38	K2A	C40	60.2(7)
C54	C53	C58	118.1(8)	O38	K2A	O281	145.9(14)
C79	C74	N73	118.4(7)	O38	K2A	C39	21.6(4)
C75	C74	N73	123.5(7)	O38	K2A	$K1^1$	138.6(10)

C75	C74	C79	118.0(8)	O38	K2A	Br1A ³	136.5(12)
C74	N73	K6	112.5(5)	O24	K2A	S27 ¹	149.6(16)
C74	N73	C82	113.7(6)	O24	K2A	N31	92.1(10)
C74	N73	C88	115.7(6)	O24	K2A	C40	65.1(7)
C82	N73	K6	86.9(4)	O24	K2A	O281	125.1(15)
C82	N73	C88	111.2(6)	O24	K2A	C39	86.0(10)
C88	N73	K6	113.6(5)	O24	K2A	K1 ¹	110.5(12)
K3	O29	K1	84.7(2)	O24	K2A	Br1A ³	71.9(10)
S27	O29	K3	167.5(5)	N31	K2A	S27 ¹	101.6(9)
S27	O29	K1	93.5(4)	N31	K2A	C40	27.0(3)
S69	O71	K94	157.8(4)	N31	K2A	O281	113.3(12)
S69	071	K7	92.6(3)	N31	K2A	C39	77.8(9)
K94	071	K7	84.92(18)	N31	K2A	K1 ¹	85.8(9)
S90	092	K2 ⁶	146.9(7)	N31	K2A	Br1A ³	85.1(10)
S90	092	K2A ⁶	152.5(10)	O92 ⁷	K2A	S27 ¹	86.9(9)
C16	C11	N10	119.1(8)	O92 ⁷	K2A	O38	101.2(15)
C12	C11	N10	123.8(8)	O92 ⁷	K2A	O24	90.8(10)
C12	C11	C16	117.1(8)	O92 ⁷	K2A	N31	157.2(19)
S84	087	K8	146.2(4)	O92 ⁷	K2A	O30 ¹	93.2(11)
S84	087	K8 ²	102.7(3)	O92 ⁷	K2A	C40	148.3(14)
S84	087	K5	99.7(3)	O92 ⁷	K2A	O28 ¹	82.9(10)
K8 ²	087	K8	76.29(16)	O92 ⁷	K2A	C39	79.9(11)
K8 ²	087	K5	127.5(2)	O92 ⁷	K2A	K11	114.2(11)
K8	087	K5	107.6(2)	O92 ⁷	K2A	Br1A ³	3117.2(14)
080	C79	C74	115.7(7)	O30 ¹	K2A	S27 ¹	22.7(3)
O80	C79	C78	125.0(7)	O30 ¹	K2A	O24	170.6(19)
C78	C79	C74	119.3(8)	O30 ¹	K2A	N31	87.5(10)
C53	N52	K3	114.8(5)	O30 ¹	K2A	C40	113.8(11)
C53	N52	C61	112.9(6)	O30 ¹	K2A	O281	47.2(6)
C53	N52	C67	116.2(6)	O30 ¹	K2A	C39	103.0(13)
C61	N52	K3	86.2(4)	O30 ¹	K2A	$K1^1$	60.1(8)
C61	N52	C67	110.5(6)	O30 ¹	K2A	Br1A ³	98.7(12)
C67	N52	K3	112.4(5)	C40	K2A	S27 ¹	124.4(11)
S69	072	K7	108.4(3)	C40	K2A	C39	78.3(9)
S017	065	K4 ³	133.8(4)	C40	K2A	K11	94.2(9)
S017	065	K4	145.5(5)	C40	K2A	Br1A ³	76.2(9)
K4	065	K4 ³	73.2(2)	O28 ¹	K2A	S27 ¹	24.6(3)
C35	C36	C37	121.0(8)	O281	K2A	C40	127.3(13)
S27	O30	K2 ⁴	103.2(7)	O28 ¹	K2A	C39	144.5(13)
S27	O30	K2A ⁴	108.5(10)	O28 ¹	K2A	K1 ¹	33.5(5)

 S21
 O22
 K8⁷
 126.2(4)
 O28¹
 K2A
 Br1A³63.5(9)

 S21
 O22
 K8³
 92.3(4)
 C39
 K2A
 K1¹
 157.2(10)

 K8⁷
 O22
 K8³
 70.66(18)
 Br1A³K2A
 S27¹
 82.3(9)

 S48
 O50
 K3
 115.1(4)
 Br1A³K2A
 C39
 151.6(11)

 N31
 C32
 C37
 117.8(7)
 Br1A³K2A
 K1¹
 38.6(5)

 C33
 C32
 N31
 123.5(7)
 S48
 S48
 S48
 S48
 S48
 S48
 S50
 S48
 S50
 S48
 S50
 <

¹+X,1+Y,+Z; ²1-X,1-Y,1-Z; ³2-X,1-Y,1-Z; ⁴+X,-1+Y,+Z; ⁵1+X,-1+Y,+Z; ⁶-1+X,+Y,+Z; ⁷1+X,+Y,+Z; ⁸-1+X,1+Y,+Z; ⁹2-X,-Y,1-Z

Table 14 Hydrogen Bonds for 2.

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C57	H57	O30 ¹	0.95	2.51	3.186(11)	128.1
C62	H62A	085	0.99	2.21	3.101(10)	149.6
C83	H83B	O22 ²	0.99	2.36	3.200(11)	141.7
O102	H10A	O49 ³	0.87	2.24	3.089(12)	163.1
O102	H10B	O66 ⁴	0.87	2.24	2.967(10)	141.3
O100	H10E	O101 ³	0.88	2.00	2.821(15)	153.4
O103	H10G	O106 ⁵	0.93	2.14	2.972(16)	148.3
O103	H10H	093	0.93	1.89	2.782(11)	158.4
O107	H10J	O102	0.97	2.19	2.857(17)	125.2
O107	H10J	O105 ⁴	0.97	2.25	2.904(16)	123.8
O108	H10K	O107	1.01	2.45	3.15(2)	125.4
O108	H10L	O28	1.01	1.79	2.722(13)	151.5
$^{1}2-X,1$	1/2+Y,1/	2-Z; ² -1+X	X,+Y,+Z; ³ 2-2	X,-Y,1-Z; ⁴ 2-2	X,1-Y,1-Z; ⁵ 1-	-X,2-Y,1-Z

Table 15 Torsion Angles for 2.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
K3	S48	049	K6 ¹	69(3)	O23	S21	O24	K2	-171.3(9)
K3	S48	C47	C46	136.5(5)	O23	S21	O24	K5 ²	5.7(4)
K3	S48	051	K1	-64.9(9)	O23	S21	O24	K2A	-167.0(13)
K3	O59	C58	C53	24.6(10)	O23	S21	022	K8 ²	3.1(4)
K3	O59	C58	C57	-155.3(6)	O23	S21	022	K84	-64.5(6)
K3	N52	C61	C62	-173.3(7)	O23	S21	C20	C19	-62.9(7)
K3	N52	C67	C68	-71.5(7)	C14	C13	C12	C11	-3.7(13)
K6	S017	066	K5	169.2(4)	C19	N10	C11	C16	71.1(9)
K6	S017	065	K4	135.5(5)	C19	N10	C11	C12	-108.0(9)
K6	S017	065	K4 ²	2.0(9)	C19	N10	C25	C26	-164.7(7)
K6	S017	'C62	C61	142.9(5)	C18	O17	C16	C11	179.6(7)
K6	O80	C79	C74	-27.9(9)	C18	O17	C16	C15	0.4(12)
K6	O80	C79	C78	150.3(7)	C61	N52	C67	C68	-165.9(7)

K6	N73	C82 C83	-174.9(6)	C62	S017	O66K6	-105.5(4)
K6	N73	C88 C89	67.1(7)	C62	S017	O66K5	63.7(4)
S48	C47	C46 N311	-175.2(5)	C62	S017	065 K4	-40.3(8)
017	C16	C15 C14	176.9(8)	C62	S017	O65 K4 ²	-173.8(5)
086	S84	O85 K5	-133.8(3)	C62	S017	O64 K6	107.5(4)
086	S84	O85 K7	-27.5(4)	O43	S42	O45K3	-50.4(7)
086	S84	O87 K8	-83.0(7)	O43	S42	O45K4	130.3(5)
086	S84	O87 K8 ³	1.3(4)	O43	S42	O44 K4 ²	150.1(6)
086	S84	O87K5	133.4(3)	O43	S42	O44 K4	-134.5(4)
086	S84	C83 C82	-178.0(6)	O43	S42	O44 K5 ²	13.1(5)
066	S017	O65 K4 ²	-55.7(7)	O43	S42	C41 C40	-51.1(8)
066	S017	O65 K4	77.8(8)	C67	N52	C61 K3	112.5(6)
066	S017	C62 C61	-162.0(6)	C67	N52	C61 C62	-60.7(9)
066	S017	O64 K6	-7.8(4)	C83	S84	O86K8 ³	-116.1(3)
080	C79	C78 C77	-176.0(8)	C83	S84	O86 K91	58.1(6)
O24	S21	O22 K8 ⁴	63.9(6)	C83	S84	O86K7	144.8(3)
O24	S21	O22 K8 ²	131.5(3)	C83	S84	O85K5	108.3(3)
O24	S21	O23 K8 ²	-131.6(3)	C83	S84	O85K7	-145.4(3)
O24	S21	O23 K5 ²	-6.1(4)	C83	S84	O87K8	33.2(7)
O24	S21	C20 C19	177.5(6)	C83	S84	O87 K8 ³	117.4(3)
045	S42	O44 K4	-6.0(4)	C83	S84	O87K5	-110.4(3)
045	S42	O44 K4 ²	-81.4(6)	C12	C11	C16 O17	-177.5(7)
045	S42	O44 K5 ²	141.6(4)	C12	C11	C16 C15	1.7(12)
045	S42	O43 K5 ²	-133.8(4)	C12	C13	C14 C15	3.1(13)
045	S42	C41 C40	-179.2(6)	C20	S21	O24K2	-58.4(10)
085	S84	O86 K8 ³	125.3(3)	C20	S21	O24 K5 ²	118.7(4)
085	S84	O86 K91	-60.5(6)	C20	S21	O24 K2A	-54.1(13)
085	S84	O86 K7	26.2(4)	C20	S21	O22 K8 ²	-110.6(4)
085	S84	O87 K8 ³	-125.7(3)	C20	S21	O22 K8 ⁴	-178.2(4)
085	S84	O87 K8	150.1(6)	C20	S21	O23 K8 ²	113.9(4)
085	S84	O87K5	6.5(4)	C20	S21	O23 K5 ²	-120.7(4)
085	S84	C83 C82	-56.9(7)	C35	C36	C37 O38	-178.2(8)
N31	C32	C33 C34	-178.9(8)	C35	C36	C37 C32	2.1(13)
N31	C32	C37 O38	-3.0(10)	C47	S48	O50K3	-107.5(4)
N31	C32	C37 C36	176.7(7)	C47	S48	O49 K6 ¹	-96(2)
N31	C40	C41 S42	-169.9(6)	C47	S48	O51K3	110.0(3)
N10	C11	C16 O17	3.3(11)	C47	S48	O51K1	45.2(10)
N10	C11	C16 C15	-177.5(7)	O28	S27	O29K3	-100(2)
N10	C11	C12 C13	-179.6(8)	O28	S27	O29K1	-18.2(5)
N10	C19	C20 S21	161.1(6)	O28	S27	O30 K2 ¹	-1.4(6)

N10C25	C26 S27	176.9(6)	O28	S27	O30 K2A ¹	-5.3(9)
O91 S90	O92 K2 ⁵	-80.3(10)	O28	S27	C26 C25	-72.5(7)
O91 S90	O92 K2A ⁵	-74(2)	C89	S90	O91 K9	-95.5(5)
O91 S90	C89 C88	-179.8(6)	C89	S90	O92 K2 ⁵	162.6(9)
O70 S69	O71 K91	55.9(11)	C89	S90	O92 K2A ⁵	169(2)
O70 S69	O71 K7	138.8(3)	C60	O59	C58 C53	-179.8(7)
O70 S69	O72 K7	-141.7(3)	C60	059	C58 C57	0.3(12)
O70 S69	C68 C67	179.1(6)	C41	S42	O45K3	73.6(6)
C53 N52	C61 K3	-115.4(6)	C41	S42	O45 K4	-105.7(4)
C53 N52	C61 C62	71.4(9)	C41	S42	O44 K4 ²	33.1(7)
C53 N52	C67 C68	63.7(9)	C41	S42	O44 K4	108.5(4)
C74 N73	C82 K6	113.2(6)	C41	S42	O44 K5 ²	-103.9(4)
C74 N73	C82 C83	-61.6(9)	C41	S42	O43 K5 ²	103.1(4)
C74 N73	C88 C89	-65.2(9)	C81	O80	C79 C74	-176.8(7)
C74 C79	C78 C77	2.2(13)	C81	O80	C79 C78	1.4(12)
C74 C75	C76 C77	4.2(12)	C46 ⁷	N31	C32 C33	-25.6(11)
N73 C74	C79 O80	-4.8(10)	C46 ⁷	N31	C32 C37	157.2(7)
N73 C74	C79 C78	176.9(7)	C46 ⁷	N31	C40 C41	69.3(9)
N73 C74	C75 C76	-179.9(7)	C46 ⁷	N31	C40 K2	-106.2(8)
N73 C82	C83 S84	-159.9(6)	C46 ⁷	N31	C40 K2A	-112.1(10)
N73 C88	C89 S90	175.8(5)	C39	O38	C37 C36	-2.1(11)
O29 S27	$O30K2^1$	-127.9(6)	C39	O38	C37 C32	177.7(7)
O29 S27	O30 K2A ¹	-131.7(9)	C25	N10	C11 C16	-157.6(7)
O29 S27	O28 K2 ¹	127.8(6)	C25	N10	C11 C12	23.2(11)
O29 S27	O28K1	19.6(5)	C25	N10	C19 C20	-73.4(9)
O29 S27	O28 K2A ¹	131.0(8)	C25	N10	C19 K96	111.6(6)
O29 S27	C26 C25	50.0(8)	C26	S27	O29K3	142(2)
O71 S69	O70 K6 ¹	-151.4(4)	C26	S27	O29K1	-136.3(3)
O71 S69	O72 K7	-13.6(4)	C26	S27	O30 K2 ¹	112.7(6)
O71 S69	C68 C67	56.9(7)	C26	S27	O30K2A ¹	108.9(9)
O92 S90	O91 K9	146.9(4)	C26	S27	O28 K2 ¹	-113.0(5)
O92 S90	C89 C88	-57.9(7)	C26	S27	O28K1	138.8(3)
C11 N10	C19 C20	59.9(9)	C26	S27	O28 K2A ¹	-109.8(8)
C11 N10	C19 K9 ⁶	-115.1(6)	064	S017	O66 K6	8.6(5)
C11 N10	C25 C26	63.9(9)	064	S017	O66K5	177.7(4)
C11 C16	C15 C14	-2.3(13)	O64	S017	O65 K4	-155.4(7)
O87 S84	O86 K8 ³	-1.2(4)	O64	S017	O65 K4 ²	71.1(7)
O87 S84	O86 K91	173.0(4)	064	S017	C62 C61	79.8(7)
O87 S84	O86 K7	-100.3(3)	C68	S69	O70 K6 ¹	90.9(5)
O87 S84	O85K5	-6.5(4)	C68	S69	O71 K91	173.7(10)

O87 S84	O85 K7	99.8(3)	C68	S69	O71K7	-103.4(3)
O87 S84	C83 C82	61.9(7)	C68	S69	O72K7	101.8(3)
C79 O80	C81 K6	154.1(8)	051	S48	O50K3	6.3(5)
C79 C74	N73K6	27.7(8)	051	S48	O49 K6 ¹	148(2)
C79 C74	N73 C82	-69.1(9)	051	S48	C47 C46	65.1(7)
C79 C74	N73 C88	160.5(7)	K8 ³	S84	O86 K91	174.2(5)
C79 C74	C75 C76	-2.5(11)	K8 ³	S84	O86K7	-99.1(2)
C79 C78	C77 C76	-0.5(13)	K8 ³	S84	O85K5	-64.8(3)
N52C53	C58 O59	4.8(11)	K8 ³	S84	O85K7	41.5(4)
N52C53	C58 C57	-175.3(7)	K8 ³	S84	O87K8	-84.3(6)
N52C53	C54 C55	178.1(7)	K8 ³	S84	O87K5	132.1(3)
N52C61	C62 S017	-164.3(6)	K8 ³	S84	C83 C82	117.0(5)
N52C67	C68 S69	-176.2(6)	K8 ²	S21	O24K2	136.3(8)
O72 S69	O70 K61	-25.1(5)	K8 ²	S21	O24 K5 ²	-46.7(4)
O72 S69	O71 K91	-71.5(11)	K8 ²	S21	O24 K2A	140.6(12)
O72 S69	O71 K7	11.4(3)	K8 ²	S21	O22 K8 ⁴	-67.6(4)
O72 S69	C68 C67	-60.7(7)	K8 ²	S21	O23 K5 ²	125.5(4)
O65 S017	' O66 K6	135.9(4)	K8 ²	S21	C20 C19	-13.9(8)
O65 S017	'O66 K5	-54.9(5)	K96	O17	C16 C11	22.8(10)
O65 S017	C62 C61	-40.1(8)	K96	O17	C16 C15	-156.4(6)
O65 S017	'O64 K6	-135.6(3)	K96	N10	C11 C16	-23.5(9)
O30 S27	O29K3	24(3)	K96	N10	C11 C12	157.4(7)
O30 S27	O29K1	105.2(4)	K96	N10	C19 C20	175.0(7)
O30 S27	O28 K2 ¹	1.4(6)	K96	N10	C25 C26	-71.6(7)
O30 S27	O28K1	-106.8(4)	K4	S42	O45K3	179.3(6)
O30 S27	O28 K2A ¹	4.6(8)	K4	S42	O44 K4 ²	-75.4(5)
O30 S27	C26 C25	172.5(6)	K4	S42	O44 K5 ²	147.6(5)
O22 S21	O24 K2	61.6(10)	K4	S42	O43 K5 ²	-66.3(5)
O22 S21	O24 K5 ²	-121.4(4)	K4	S42	C41 C40	121.1(6)
O22 S21	O24 K2A	65.9(13)	K2 ¹	S27	O29K3	-37(3)
O22 S21	O23 K8 ²	-3.8(5)	K2 ¹	S27	O29K1	44.9(8)
O22 S21	O23 K5 ²	121.7(4)	K21	S27	O28K1	-108.2(5)
O22 S21	C20 C19	55.8(8)	K2 ¹	S27	C26 C25	-131.0(8)
O50 S48	O49 K61	23(3)	K2	O38	C37 C36	159.0(7)
O50 S48	C47 C46	-177.7(6)	K2	O38	C37 C32	-21.2(10)
O50 S48	O51K3	-4.7(4)	K2	N31	C32 C33	-157.6(7)
O50 S48	O51 K1	-69.6(9)	K2	N31	C32 C37	25.2(9)
C32 N31	C40 C41	-62.8(9)	K2	N31	C40 C41	175.5(9)
C32 N31	C40 K2	121.7(8)	K5	S84	O86 K8 ³	62.9(4)
C32 N31	C40 K2A	115.8(10)	K5	S84	O86 K91	-122.9(4)

C32 C33	C34 C35	2.7(13)	K5	S84	O86 K7	-36.2(4)
C33 C32	C37 O38	179.6(7)	K5	S84	O85 K7	106.3(3)
C33 C32	C37 C36	-0.6(12)	K5	S84	O87 K8 ³	-132.1(3)
C33 C34	C35 C36	-1.3(13)	K5	S84	O87 K8	143.6(7)
C37 O38	C39 K2A	160.6(11)	K5	S84	C83 C82	2.7(7)
C37 C36	C35 C34	-1.1(14)	K5 ²	S42	O45K3	-135.1(3)
C37 C32	C33 C34	-1.8(12)	K5 ²	S42	O45K4	45.5(5)
C57 C56	C55 C54	1.8(13)	K5 ²	S42	O44 K4 ²	137.0(8)
O93 S90	O91 K9	20.4(6)	K5 ²	S42	O44 K4	-147.6(5)
O93 S90	O92 K2 ⁵	47.4(10)	K5 ²	S42	C41 C40	20.7(7)
O93 S90	O92 K2A5	54(2)	K5 ²	S21	O24K2	-177.0(10)
O93 S90	C89 C88	60.0(7)	K5 ²	S21	O24K2A	-172.8(13)
O49 S48	O50K3	132.5(4)	K5 ²	S21	O22 K8 ²	63.5(3)
O49 S48	C47 C46	-55.5(7)	K5 ²	S21	O22 K8 ⁴	-4.1(7)
O49 S48	O51K3	-131.3(3)	K5 ²	S21	O23 K8 ²	-125.5(4)
O49 S48	O51K1	163.8(8)	K5 ²	S21	C20 C19	-118.7(6)
C82 N73	C88 C89	163.2(7)	K5	S017	066 K6	-169.2(4)
C56 C57	C58 O59	177.0(8)	K5	S017	O65 K4 ²	-92.1(5)
C56 C57	C58 C53	-3.0(13)	K5	S017	065 K4	41.4(7)
C56 C55	C54 C53	-2.9(13)	K5	S017	C62 C61	-121.5(6)
C58 C53	N52K3	-26.6(9)	K5	S017	O64K6	-3.5(9)
C58 C53	N52 C61	70.1(9)	K1	S27	O29K3	-82(2)
C58 C53	N52C67	-160.7(7)	K1	S27	O30 K21	-60.3(5)
C58 C53	C54 C55	1.2(12)	K1	S27	O30K2A1	-64.1(9)
C58 C57	C56 C55	1.2(13)	K1	S27	O28 K2 ¹	108.2(5)
C75 C74	N73K6	-154.9(6)	K1	S27	O28 K2A1	111.4(8)
C75 C74	N73 C82	108.4(8)	K1	S27	C26 C25	-17.3(9)
C75 C74	N73 C88	-22.1(10)	K7	S69	O70 K6 ¹	-75.5(6)
C75 C74	C79 O80	177.7(7)	K7	S69	O71 K91	-82.9(10)
C75 C74	C79 C78	-0.6(12)	K7	S69	C68 C67	-9.6(6)
C75 C76	C77 C78	-2.7(12)	K7	S84	O86 K8 ³	99.1(2)
C88 N73	C82 K6	-114.1(6)	K7	S84	O86 K91	-86.7(4)
C88 N73	C82 C83	71.0(9)	K7	S84	O85K5	-106.3(3)
O44 S42	O45K3	-174.9(5)	K7	S84	O87 K8	-149.0(5)
O44 S42	O45 K4	5.8(4)	K7	S84	O87 K8 ³	-64.7(2)
O44 S42	O43 K5 ²	-9.7(4)	K7	S84	O87K5	67.4(2)
O44 S42	C41 C40	65.7(7)	K7	S84	C83 C82	-114.4(6)
C16 C11	C12 C13	1.2(13)	K2A ¹	S27	O29K3	-30(3)
C16 C15	C14 C13	-0.1(13)	K2A ¹	S27	O29K1	51.1(11)
C40 N31	C32 C33	104.3(9)	K2A ¹	S27	O28K1	-111.4(8)

C40 N31	C32 C37	-72.9(9)	$K2A^1S27$	C26 C25	-135.7(9)
C54 C53	N52K3	156.6(6)	K2A O38	C37 C36	155.6(12)
C54 C53	N52C61	-106.8(9)	K2A O38	C37 C32	-24.6(13)
C54 C53	N52C67	22.4(11)	K2A N31	C32 C33	-158.5(10)
C54 C53	C58 O59	-178.2(7)	K2A N31	C32 C37	24.3(11)
C54 C53	C58 C57	1.8(12)	K2A N31	C40 C41	-178.6(11)
¹ +X,-1+Y	Z,+Z; ² 2-X,	,1-Y,1-Z; ³ 1-X,1	-Y,1-Z; ⁴ 1+	-X,+Y,+Z;	⁵ -1+X,+Y,+Z; ⁶ 1+X,-
1+Y,+Z;	⁷ +X,1+Y,+	⊦Z			

Table 16 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters
$(Å^2 \times 10^3)$ for 2.

Atom	x	V	Z	U(eq)
H36	11180	5456	2352	35
H33	9325	6185	3109	29
H13	11432	3327	2360	34
H57	8650	3542	2339	32
H82A	6270	5846	4097	25
H82B	6512	5312	3708	25
H56	7371	3654	2024	34
H75	4296	6158	3077	28
H76	3917	5716	2374	31
H34	8974	5648	2406	32
H88A	5389	7080	4032	26
H88B	4695	6576	3702	26
H55	6449	3197	2394	31
H78	6100	5334	2307	32
H40A	11269	5990	4132	23
H40B	11501	5421	3747	23
H54	6831	2706	3099	28
H15	13641	3600	2302	30
H14	12355	3802	1994	39
H19A	14013	3506	3706	26
H19B	13729	2970	4081	26
H18A	14719	2673	2572	43
H18B	15314	2890	3005	43
H18C	14805	3800	2765	43
H61A	8956	3674	3697	28
H61B	8858	3058	4102	28
H62A	7715	3836	4106	28
H62B	7626	4252	3639	28

H67A 7229	2324	3736	28
H67B 7927	1806	4059	28
H83A 5481	4246	3587	26
H83B 5020	4947	3845	26
H12 11795	2806	3048	29
H20A 12519	3962	3831	33
H20B 13011	4640	3581	33
H35 9906	5261	2042	36
H77 4833	5233	1996	32
H47A 9679	-2064	3213	25
H47B 10410	-1502	3490	25
H89A 4794	7923	3214	24
H89B 5445	8443	3566	24
H60A 10339	2927	3037	43
H60B 9815	3835	2807	43
H60C 9734	2716	2607	43
H41A10374	4467	3613	30
H41B 10030	5132	3937	30
H81A7207	6235	2582	37
H81B 7287	5086	2750	37
H81C 7818	5961	3002	37
H46A 10398	-2701	4044	23
H46B 9710	-3290	3741	23
H39A 12365	5180	2859	39
H39B 12849	6149	3064	39
H39C 12245	6260	2627	39
H25A 12166	2276	3670	31
H25B 12851	1712	3985	31
H26A 12900	487	3456	29
H26B 12188	1035	3157	29
H68A 7959	458	3583	21
H68B 7300	991	3241	21
H10A 10998	2380	5585	70
H10B 11431	2942	5346	70
H10C 6798	7526	4564	94
H10D6596	8502	4381	94
H10E 10909	-262	5466	88
H10F 11338	664	5479	88
H10G 5670	8643	5087	102
H10H5418	8536	4622	102

H10I 12430	1900	4731	134
H10J 11961	2093	5064	134
H10K 13068	832	4967	203
H10L 12704	121	4582	203

Table 17 Atomic Occupancy for 2.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
K2	0.75(11)	Br1	0.883(3)	Br1A	0.117(3)
K2A	0.25(11)				