Supporting information

A facile synthesis of highly stable superhydrophobic nanofibrous film for effective oil/water separation

Xian Kong,^{a,b} Junming Zhang,^b Xuepin Liao,^b Xin Huang,^{a,b*} Bi Shi^{a,b*}

^aDepartment of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China

^bNational Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China

*Corresponding authors: xhuangscu@163.com (X. Huang) and sibitannin@vip.163.com (B. Shi)

Fig. S1 Particle diameter distribution of TiO_2 nanoparticles on SNF.

Fig. S2 FESEM images of CFM (a) and VTEO-CFM (b); (c) and (d) are their corresponding images at higher magnifications.

Fig. S3 SEM images and SEM-EDS mapping images for the surface of VTEO-CFM (a, b) and for the cross section of VTEO-CFM (c, d), respectively. The scale bar is 0.3 mm.

Fig. S4 Ti 2p core level XPS spectrum of TiO_2 -CFM surface (a), and Si 2p (b) core level XPS spectrum of SNF surface.

Fig. S5 Photographs of CFM (a), TiO_2 -CFM (b), VTEO-CFM (c), SNF (d) immersed in water. Mirror like phenomenon on the SNF submerged in water (e).

Fig. S6 Images of static water droplets (5 μ L) on TiO₂-CFM coated by γ -aminopropyltriethoxysilane (a), trimethoxy(octadecyl)silane (b), respectively.

Fig. S7 The separation efficiency of SNF for the different ratio mixture of the water and octane (a) and dodecane (b) for 5 cycles.

Fig. S8 The separation efficiency of SNF for the different ratio mixture of the water and gasoline (a) and diesel oil (b) for 5 cycles.

Fig. S9 Optical image showing the system to determine the water intrusion pressure of SNF (water was dyed with methyl blue).

Fig. S10 FESEM images for the surface (a-c) and cross section (d-f) of PTFE.