Supporting information

Single step incorporation of isatin to enaminone: a recyclable catalyst towards assembly of diverse four ring fused pyrrolo[2,3,4-kl]acridin-1-ones

Chunmei Li and Furen Zhang*

School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang Province 312000, China. Email: frzhang@usx.edu.cn

Table of Contents

1. Materials and Methods S2
2. Preparation and characterization of the carbonaceous material ($\mathrm{C}_{\left.-\mathrm{SO}_{3} \mathrm{H}\right)}$ catalyst S2
3. General procedure for the synthesis of 3 S3
4. Spectral data of the compounds S3
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra. S12

Materials and Methods. The reagents were purchased from Aladdin and Aldrich and were not purified before use. Analytical thin layer chromatography (TLC) was performed using Merck silica gel GF254 plates. Melting points were measured on an X-4 melting point apparatus. ${ }^{1} \mathrm{HNMR}$ spectra were recorded on a 400 MHz instrument (Bruker Avance 400 Spectrometer). Chemical shifts (δ) are given in ppm relative to TMS as the internal reference, with coupling constants (J) in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz . Chemical shift were reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. Elemental analysis was carried out on EuroEA elemental analyzer.

Preparation and characterization of the carbonaceous material $\left(\mathbf{C - S O} \mathbf{O}_{3} \mathrm{H}\right)$ catalyst

 polyvinyl alcohol

Fig. 1. The preparation of the carbon functinalized material
According to literature method, ${ }^{1}$ the polyvinyl alcohol (5.0 g), hydroxyethylsulfuric acid $(3.5 \mathrm{~g})$ and deionized water $(50 \mathrm{~mL})$ was mixed in Teflon-lined stainless steel autoclaves, which was heated at $180^{\circ} \mathrm{C}$ for 4 h . Then, the resulting mixture were filtered, washed with water and methanol, and dried in a vacuum oven at $100^{\circ} \mathrm{C}$ for 4 h . The goal product was obtained as black solid with 50% yield according to polyvinyl alcohol (Fig. 1).

The acidity of the sulfonated carbonaceous materials was $2.4 \mathrm{mmol} / \mathrm{g}$ by neutralization titration. According to XPS analysis, the S content of 7.6% indicated almost all the S existed in the forms of sulfonic acid groups and the O content was as high as 24% indicated that many oxygen-containing groups besides the carbonyl acid groups were exist. The BET surface of the solid acid was $146 \mathrm{~m}^{2} / \mathrm{g}$. The 1040 and 1195 cm^{-1} absorbability of IR spectra indicated the existence of the sulfuric acid groups. FT-IR spectra showed that the sulfonated carbonaceous materials contains resident functionalities such as hydroxyl ($3500 \mathrm{~cm}^{-1}$), carboxylate ($1704 \mathrm{~cm}^{-1}$), $\mathrm{C}=\mathrm{C}$ groups (1604 cm^{-1}) and C-O groups ($1204 \mathrm{~cm}^{-1}$).

General procedure for the synthesis of 3

Enaminone (1.0 mmol) was introduced in a $10-\mathrm{mL}$ reaction vial, isatin (1.0 mmol) and carbonaceous material (10 mg), and water (3 mL), were then successively added. Then, the reaction vial was closed and stirred on an oil bath at $80^{\circ} \mathrm{C}$ for the appropriate time. The mixture was stirred until TLC revealed that the conversion of the starting material was complete. Then, the mixture was cooled to room temperature and the catalyst and the product were filtered. The filtered solid catalyst was washed with water and methanol, and dried in vacuum oven at $100^{\circ} \mathrm{C}$ for 4 h . The resulting solution was concentrated and recrystallized from EtOH (95\%) to give the pure products.

Spectral data of the compounds

4,4-dimethyl-2-phenyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3a)

Yellow solid; mp $187-188{ }^{\circ} \mathrm{C}$ (lit: ${ }^{2} \mathrm{mp} 188-190{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.75(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.76-7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, $7.68(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.51-7.58(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{ArH})$, $5.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

2-(4-chlorophenyl)-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3b) Yellow solid; mp $178-180{ }^{\circ} \mathrm{C}$ (lit: ${ }^{2} \mathrm{mp} 182-183{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.75(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.32(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.82(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$, $\mathrm{ArH}), 7.73(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}, \mathrm{ArH}$), $5.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

2-(2-chlorophenyl)-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3c) Yellow solid; mp $137-138{ }^{\circ} \mathrm{C}\left(\mathrm{lit}:{ }^{3} \mathrm{mp} 136-138{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.72(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.77(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}$, $\mathrm{ArH}), 7.68(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.61-7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.44-7.47(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, $5.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.23\left(\mathrm{~d}, 2 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4,4-dimethyl-2-(p-tolyl)-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3d)

Yellow solid; mp $183-184{ }^{\circ} \mathrm{C}\left(\mathrm{lit}:{ }^{4} \mathrm{mp} 182-183{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.90(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 8.56(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.86-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.38-7.46 (m, 4H, ArH), $5.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 2.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4,4-dimethyl-2-(o-tolyl)-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3e)

Yellow solid; $\mathrm{mp} 118-120^{\circ} \mathrm{C}$ (lit: ${ }^{5}$ no report); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.73$ (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.77(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.67$ $(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.35-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $3.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{~d}, 6 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.

Yellow solid; mp 137-138 ${ }^{\circ} \mathrm{C}$; IR (KBr): 2959, 1700, 1646, 1600, 1509, 1490, 1442, 1342, 1207, 1152, 1086, 1069, $892 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.73(\mathrm{dd}, 1 \mathrm{H}, J=2.0$, $8.0 \mathrm{~Hz}, \mathrm{ArH}$), $8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.75-7.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.65-7.69(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.17-7.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=166.9,154.6,149.7,139.0,136.4,133.9,132.0,130.6,129.5,129.4,128.5$, 127.6, 127.5, 126.7, 125.3, 124.3, 122.8, 117.8, 44.3, 37.1, 30.8, 31.0, 21.2, 17.9; ESI $\mathrm{m} / \mathrm{z} 355.21(\mathrm{M}+\mathrm{H})^{+}$; anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 81.33 ; \mathrm{H}, 6.26$; $\mathrm{N}, 7.90$ found: C, 81.30; H, 5.98; N, 8.13\%.

4,4-dimethyl-2-(naphthalen-1-yl)-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3g) Brown solid; mp 114-116 ${ }^{\circ} \mathrm{C}$; IR (KBr): 2956, 1704, 1653, 1603, 1513, 1490, 1445, 1355, 1198, 1089, 1060, $895 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.75(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, ArH), $8.23(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), \quad 8.01(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.78-7.82(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.63-7.71 (m, 3H, ArH), 7.48-7.58 (m, 3H, ArH), 5.23 (s, 1H, CH), 3.26 (s, 2H, CH_{2}), $1.29\left(\mathrm{~d}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.0,134.6$, 129.6, 129.4, 128.5, 127.8, 127.1, 127.0, 126.6, 125.6, 124.4, 123.0, 122.8, 118.5, 44.3, 37.1, 30.8, 30.7; ESI m/z $377.20(\mathrm{M}+\mathrm{H})^{+}$; anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 82.95$; H, 5.36; $\mathrm{N}, 7.44$ found: C, 82.87; H, 5.51; N, 7.49\%.

2-benzyl-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3h)

Brown solid; mp 134-136 ${ }^{\circ} \mathrm{C}$ (lit: ${ }^{6} \mathrm{mp} 136-138{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.71(\mathrm{dd}, 1 \mathrm{H}, J=1.2,8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.73-7.77(\mathrm{~m}, 1 \mathrm{H}$,

ArH), 7.64-7.68 (m, 1H, ArH), 7.27-7.37 (m, 5H, ArH), 5.45 (s, 1H, CH), 5.03 (s, 2H, CH_{2}), $3.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.27\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6$, $134.6,129.5,129.4,128.7,127.8,127.3,127.1,126.4,124.2,117.7,44.4,43.8,37.1,30.9$.

2-cyclopropyl-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3i)
Yellow solid; mp 137-138 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3035, 2941, 1698, 1661, 1467, 1441, 1339, 1153, $793 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.67(\mathrm{dd}, 1 \mathrm{H}, J=1.2,8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.13(\mathrm{~d}$, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.70-7.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.61-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 5.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $3.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.81-2.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07-1.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.00-1.03 (m, 2H, CH2); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5,135.2,135.0,133.8$, 129.3, 127.6, 124.2, 122.6, 117.6, 44.1, 37.1, 31.0, 22.8, 5.8; ESI m/z $291.22(\mathrm{M}+\mathrm{H})^{+}$; anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$: C, 78.59; H, 6.25; N, 9.65 found: C, $78.44 ; \mathrm{H}, 6.52$; N, 9.28\%.

2-cyclohexyl-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3j)

Yellow solid; mp 159-160 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3027, 2943, 1699, 1453, 1339, 1059, $892 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.71(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}$, ArH), 7.71-7.75 (m, 1H, ArH), $7.64(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 5.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.15(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.01-2.11 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.91\left(\mathrm{t}, 3 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.76-1.80(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.46-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.3,154.3,149.5,132.2,129.3,127.5,126.5,124.1,122.6$, 118.4, 52.2, 43.9, 37.1, 31.0, 30.9, 26.1, 25.4; ESI m/z $333.28(\mathrm{M}+\mathrm{H})^{+}$; anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 79.48 ; \mathrm{H}, 7.28 ; \mathrm{N}, 8.43$ found: C, 79.57; H, 6.98; N, 8.78\%.

9-fluoro-4,4-dimethyl-2-phenyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3k) Yellow solid; mp $163-164{ }^{\circ} \mathrm{C}\left(\right.$ lit: ${ }^{2} \mathrm{mp} 160-161{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 8.35 (dd, 1H, $J=2.8,8.8 \mathrm{~Hz}, \mathrm{ArH}$), 8.15-8.19 (m, 1H, ArH), 7.49-7.58 (m, 5H, ArH), 7.41-7.45 (m, 1H, ArH), $5.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

2-(4-chlorophenyl)-9-fluoro-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)one (31)

Yellow solid; mp 191-193 ${ }^{\circ} \mathrm{C}$ (lit: ${ }^{7} \mathrm{mp} 190-192{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 8.32 (dd, 1H, $J=2.8,8.8 \mathrm{~Hz}, \mathrm{ArH}$), 8.15-8.19 (m, 1H, ArH), 7.47-7.55 (m, 3H, ArH), 7.45-7.47 (m, 2H, ArH), $5.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.3,153.7,146.7,133.2,133.1,132.9,131.8,131.7$, 129.6, 127.5, 119.5, 119.1, 108.4, 43.9, 37.2, 34.8.

9-fluoro-4,4-dimethyl-2-(p-tolyl)-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3m) Yellow solid; mp $174-176{ }^{\circ} \mathrm{C}$ (lit: ${ }^{2} \mathrm{mp} 172-173{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 8.35 (dd, 1H, $J=3.2,9.2 \mathrm{~Hz}, \mathrm{ArH}$), 8.15-8.18 (m, 1H, ArH), 7.49-7.54 (m, 1H, ArH), 7.34-7.39 (m, 4H, ArH), 5.63 (s, 1H, CH), $3.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.6,154.2,137.6,133.4,131.9,131.7$, $131.6,130.0,126.9,126.2,119.4,118.9,108.4,108.2,44.0,37.1,30.9,21.2$.

2-benzyl-9-fluoro-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3n)
Yellow solid; mp 163-164 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3020, 2947, 1701, 1665, 1468, 1445, 1329, 1148, $890 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.32$ (dd, $1 \mathrm{H}, J=2.8,8.8 \mathrm{~Hz}, \mathrm{ArH}$), 8.11$8.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.46-7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.27\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=162.5,154.3,146.6,136.6,132.7,131.7,131.6,128.8,127.7,127.4,127.1,119.3$, 119.0, 118.4, 108.4, 108.1, 43.9, 37.1, 30.9; ESI m/z $359.10(\mathrm{M}+\mathrm{H})^{+}$; anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}, 77.08 ; \mathrm{H}, 5.34 ; \mathrm{N}, 7.82$ found: C, 76.82; H, 4.99; N, 8.11\%.

9-bromo-4,4-dimethyl-2-phenyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3o)
Yellow solid; mp $165-166{ }^{\circ} \mathrm{C}$ (lit: ${ }^{2} \mathrm{mp} 164-165{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.65(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.60(\mathrm{dd}, 1 \mathrm{H}, J=2.4,9.2$ $\mathrm{Hz}, \mathrm{ArH}$), 7.33 (t, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}$), $7.26-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.18(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}$, ArH), 5.44 (s, 1H, CH), 2.96 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

9-bromo-4,4-dimethyl-2-(p-tolyl)-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3p) Yellow solid; mp $195-196{ }^{\circ} \mathrm{C}$ (lit: ${ }^{2} \mathrm{mp} 192-194{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.88(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.83(\mathrm{dd}, 1 \mathrm{H}, J=2.4,8.8$ $\mathrm{Hz}, \mathrm{ArH}), 7.35-7.39(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 5.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.33\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

9-bromo-4,4-dimethyl-2-(naphthalen-1-yl)-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)one (3q)

Yellow solid; mp $176-178{ }^{\circ} \mathrm{C}\left(\right.$ lit: ${ }^{2} \mathrm{mp} 174-176{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.90(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 8.07(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathrm{ArH}), 7.99-8.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.86 (dd, 1H, $J=2.4,9.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.64 (d, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}$), 7.49-7.58 (m, 3H, ArH), 5.27 (s, $1 \mathrm{H}, \mathrm{CH}$), $3.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29\left(\mathrm{~s}, 6 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.

2-benzyl-9-bromo-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (3r) Yellow solid; mp 201-202 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3021, 2945, 1700, 1663, 1466, 1450, 1331, 1149, $899 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.86(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 7.99(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.49(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.27\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=167.0,154.8,148.1,136.6,132.9,132.6,130.9,128.8,127.7,127.4,126.5$, 123.6, 122.0, 118.6, 44.0, 43.9, 37.1, 30.9; ESI m/z $419.02(\mathrm{M}+\mathrm{H})^{+}$; anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}$: C, 65.88; H,4.57; N, 6.68 found: C, 66.12; H,4.85; N, 6.47\%.

2-phenylpyrrolo[2,3,4-kl]acridin-1(2H)-one (3s)

Red brown solid; mp 295-296 ${ }^{\circ} \mathrm{C}$ (lit: ${ }^{2} \mathrm{mp} 298-300{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.96(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.47(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.91-7.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $7.84(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.72(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{ArH}), 7.59-7.67(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, 7.45-7.49 (m, 1H, ArH), 7.04 (d, 1H, $J=7.2 \mathrm{~Hz}, \mathrm{ArH}$).

2-(p-tolyl)pyrrolo[2,3,4-kl]acridin-1(2H)-one (3t)

Red brown solid; mp $232-234{ }^{\circ} \mathrm{C}$ (lit: ${ }^{5}$ no report); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.96$ (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.46$ (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), 7.95-7.97 (m, 1H, ArH), 7.90 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), 7.81-7.86 (m, 1H, ArH), 7.69-7.73 (m, 1H, ArH), $7.52(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}, \mathrm{ArH}$), $7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 2.48(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.3,151.9,146.6,140.3,137.7,132.8,130.8$, $130.6,130.2,129.2,127.7,125.8,124.2,123.1,122.6,119.8,105.9,21.2$.

2-(2,4-dimethylphenyl)pyrrolo[2,3,4-kl]acridin-1(2H)-one(3u)

Red brown solid; mp $175-176{ }^{\circ} \mathrm{C}$ (lit: ${ }^{2} \mathrm{mp} 172-173{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.94(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.46(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.92-7.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.88 (d, 1H, $J=9.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.30 (t, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}$), 7.64-7.68 (m, 1H, ArH), 7.19-7.30 (m, 1H, ArH), 6.65 (d, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{ArH}$), 2.45 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.25 (s, 3 H , CH_{3}).

2-(naphthalen-1-yl)pyrrolo[2,3,4-kI]acridin-1(2H)-one (3v)

Red brown solid; mp 211-212 ${ }^{\circ} \mathrm{C}\left(\right.$ lit: ${ }^{2} \mathrm{mp} 208-210{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.98(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.50(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 8.06(\mathrm{t}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, ArH), $8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.96-8.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$,

ArH), 7.84-7.88 (m, 1H, ArH), $7.77(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.68-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.62-7.66 (m, 1H, ArH), 7.56-7.60 (m, 1H, ArH), 7.47-7.51 (m, 1H, ArH), $7.50(\mathrm{~d}, 1 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}, \mathrm{ArH})$.

9-fluoro-2-phenylpyrrolo[2,3,4-kI]acridin-1(2H)-one (3w)

Red brown solid; mp 226-228 ${ }^{\circ} \mathrm{C}$ (lit: ${ }^{8} \mathrm{mp} 228-230{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.52(\mathrm{dd}, 1 \mathrm{H}, J=2.8,8.8 \mathrm{~Hz}, \mathrm{ArH}), 8.44-8.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, ArH), 7.69-7.76 (m, 2H, ArH), 7.59-7.65 (m, 4H, ArH), 7.48 (t, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}$), $7.05(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=194.8,167.2,151.7$, $149.3,134.6,133.5,132.6,129.6,127.8,125.8,122.7,122.4,115.4,107.0,106.6$.

2-(2,4-dimethylphenyl)-9-fluoropyrrolo[2,3,4-kI]acridin-1(2H)-one (3x)

Red brown solid; mp 161-163 ${ }^{\circ} \mathrm{C}$ (lit: ${ }^{2} \mathrm{mp} 162-165^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.52(\mathrm{dd}, 1 \mathrm{H}, J=2.8,8.8 \mathrm{~Hz}, \mathrm{ArH}), 8.45-8.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}$, $\mathrm{ArH})$, 7.70-7.76 (m, 1H, ArH), 7.64-7.68 (m, 1H, ArH), 7.22-7.29 (m, 2H, ArH), 7.19$7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $189.6,160.9,151.5,149.3,140.5,139.3,136.4,133.6,133.5,132.8,132.3,130.4,128.2$, $127.9,122.3,122.0,120.2,107.3,106.1,21.2,18.0$.

9-bromo-2-phenylpyrrolo[2,3,4-kl]acridin-1(2H)-one (3y)

Red brown solid; mp 212-214 ${ }^{\circ} \mathrm{C}$ (lit: ${ }^{2} \mathrm{mp} 208-210{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $9.12(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 8.31(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathrm{ArH}), 7.99(\mathrm{dd}, 1 \mathrm{H}, J=2.4,9.6$ $\mathrm{Hz}, \quad \mathrm{ArH}), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathrm{ArH}), 7.71-7.75$ (m, 1H, ArH), 7.59-7.66 (m, 3H, ArH), 7.46-7.50 (m, 1H, ArH), 7.05 (d, 1H, $J=6.8 \mathrm{~Hz}, \mathrm{ArH})$.

References

1 X. Z. Liang, H. Q. Xiao, Y. S. Shen and C. Z. Qi, Mater. Lett., 2010, 64, 953.
2 H. Wang, L. Li, W. Lin, P. Xu, Z. Huang and D. Shi, Org. Lett., 2012, 14, 4598.
3 L. Li, H. Wang, W. Lin, Z. Huang and D. Shi, J. Heterocyclic Chem., 2014, 51, 1778.

4 B. Jiang, X. Wang, M.-Y. Li, Q. Wu, Q. Ye, H.-W. Xu and S.-J. Tu, Org. Biomol. Chem., 2012, 10, 8533.

5 S. Ray, A. Bhaumik, M. Pramanik and C. Mukhopadhyay, RSC Adv., 2014, 4, 15441.

6 V. O. Iaroshenko, S. Dydkin, V. Y. Sosnovskikh, A. Villinger and P. Langer, Synthesis, 2013, 45, 971.

7 M.-H. Hu, W. Lin, C.-P. Cao, Z.-B. Huang and D.-Q. Shi, J. Heterocyclic Chem., 2014, 51, E227.
8 C. Cao, C. Xu, W. Lin, X. Lin, M. Hu, J. Wang, Z. Huang, D. Shi and Y. Wang, Molecules, 2013, 18, 1613.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

3e

3 m

30

\square
6
1
1
1

$\square .194$
-2.453
䈍

