Supporting Information

Harvesting red fluorescence through design specific tuning of ICT and ESIPT: An efficient optical detection of cysteine and live cell imaging

Uzra Diwan^a, Virendra Kumar^a, Rakesh K. Mishra^b, Nishant Rana^c, Biplob Koch^c and K. K. Upadhyay^{*a}

^aDepartment of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi-221005, India.

^bPhotosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR– National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695019, India.

^cDepartment of Zoology (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi-221005, India.

*E-mail: drkaushalbhu@yahoo.co.in; kku@bhu.ac.in, Tel: +91 542 670 2488

Figures/Tables	Captions	Pages					
Fig. S1	Effect of solvent polarity on absorption and emission spectrum of R1						
Fig. S2	Naked eye colour changes of R1 towards different anions and neutral analytes in of H_2O : ACN (7:3, v/v)						
Fig. S3	Detection limit and calibration curves for R1 with Cys from UV- visible titration data						
Fig. S4	Non-linear curve fitting for R1 with Cys from UV-visible titration data						
Fig. S5	Fluorescence response of R1 in the presence of different analytes under the UV lamp						
Fig. S6	Non-linear curve fitting for R1 with Cys from fluorescence titration data						
Fig. S7	Detection limit and calibration curves for R1 with Cys from fluorescence titration data						
Fig. S8	UV-vis. absorption spectrum of R1 towards different anions						
Fig. S9	Emission spectrum of R1 in the presence of different anions						
Fig. S10	A plausible mechanism for selective response of R1 towards Cysteine						
Fig. S11	HRMS spectrum of R1-Cys						
Fig. S12	Optimized structure R1 and R1-Cys						
Fig. S13	Cytotoxicity profile of R1 on HeLa cells after 24 hr treatment						
Fig. S14	¹ H NMR spectrum of R1	S16					
Fig. S15	¹³ C NMR spectrum of R1						
Fig. S16	IR spectrum of R1						
Fig. S17	Mass spectrum of R1	S19					
Figure S18	¹ H- ¹ H COSY spectrum of R1	S20					
Table S1	ble S1 Comparison of Fluorescent ESIPT Probes for Cysteine based on HBT derivative						

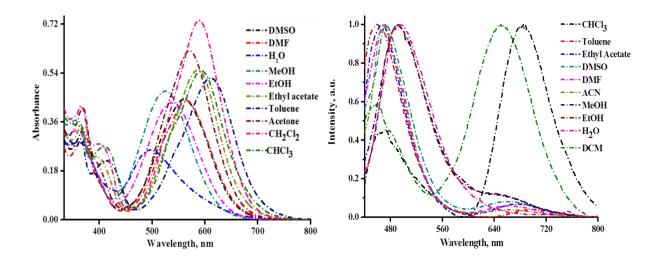


Figure S1: Effect of solvent polarity on absorption and emission spectrum of R1

Figure S2: Naked eye colour changes of R1 (10 μ M) towards different anions and neutral analytes in of H₂O:ACN (7:3, v/v)

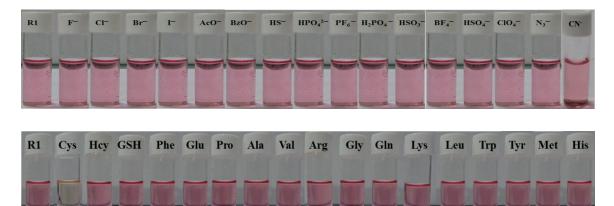
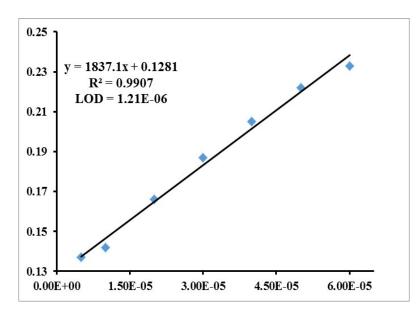



Figure S3: Detection limit and calibration curves for R1 with Cys from UV-visible titration data

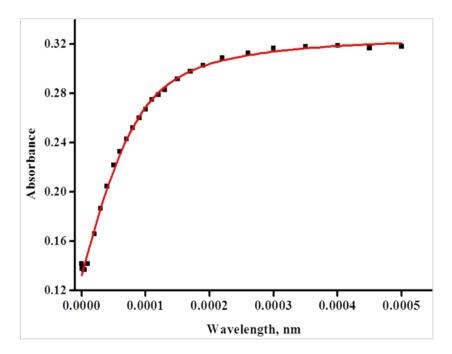
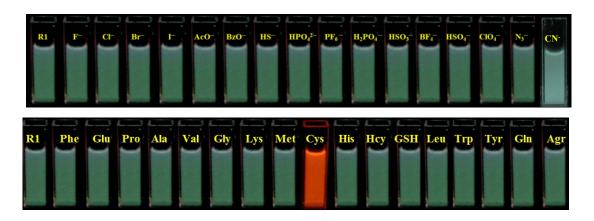
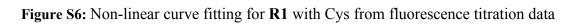
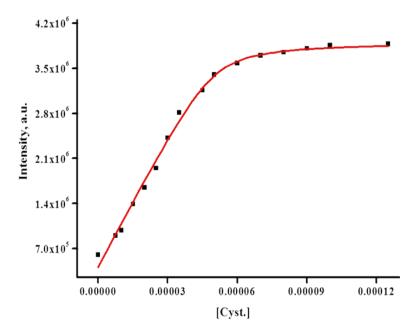





Figure S4: Non-linear curve fitting for R1 with Cys from UV-visible titration data

Figure S5: Fluorescence response of R1 in the presence of different analytes under the UV lamp

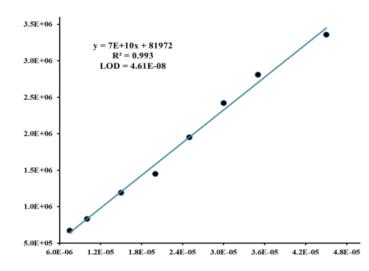
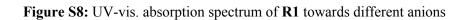



Figure S7: Detection limit and calibration curves for **R1** with Cys from fluorescence titration data

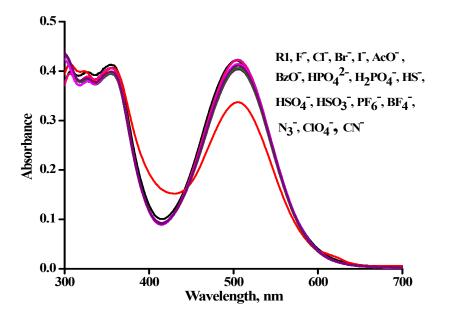
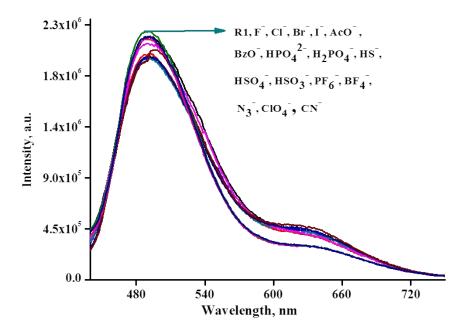
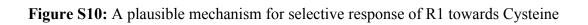
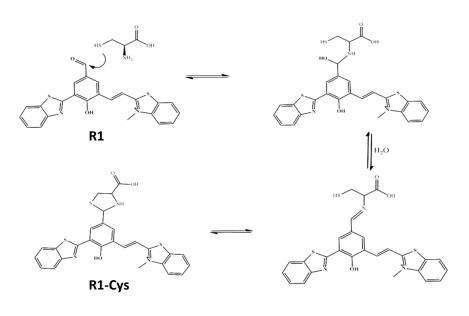
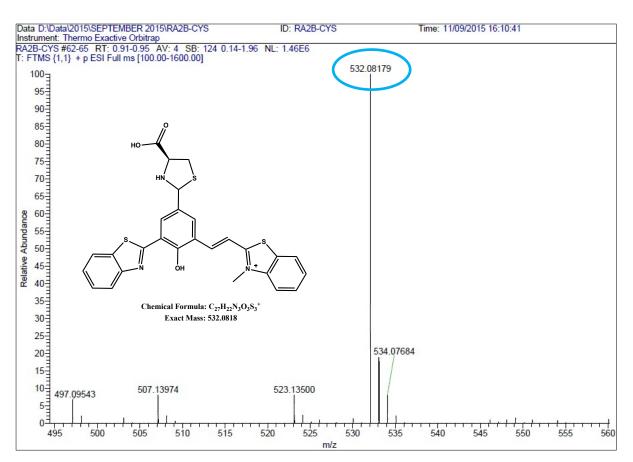
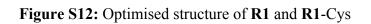
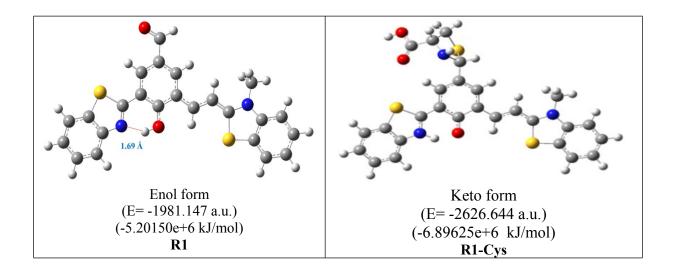






Figure S9: Emission spectrum of R1 in the presence of different anions





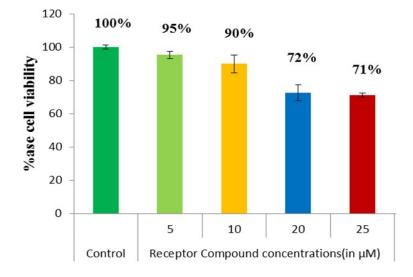


Figure S11: HRMS spectrum of R1-Cys

Figure S13. Cytotoxicity profile of R1 on HeLa cells after 24 hr treatment

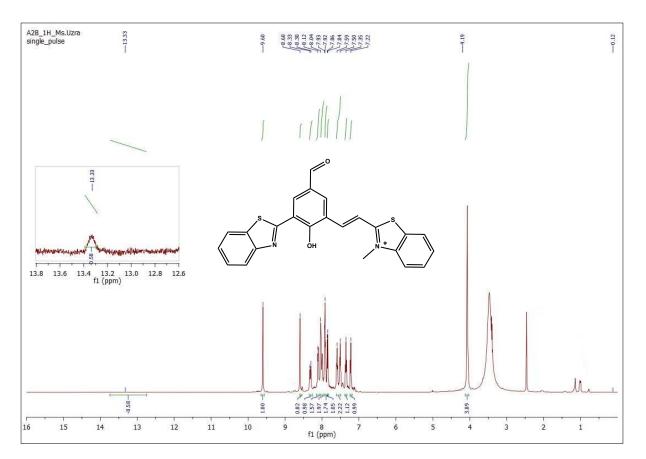
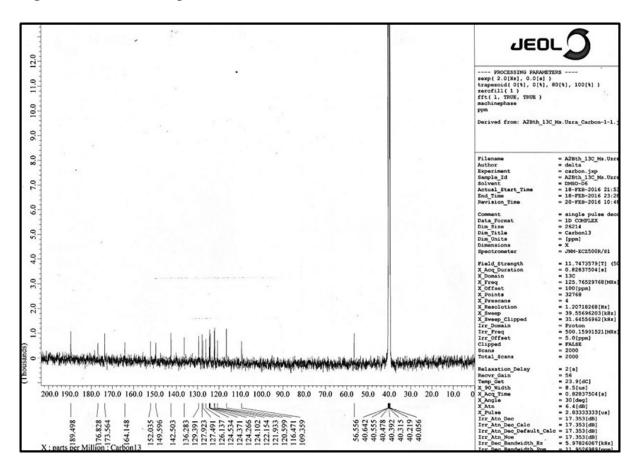
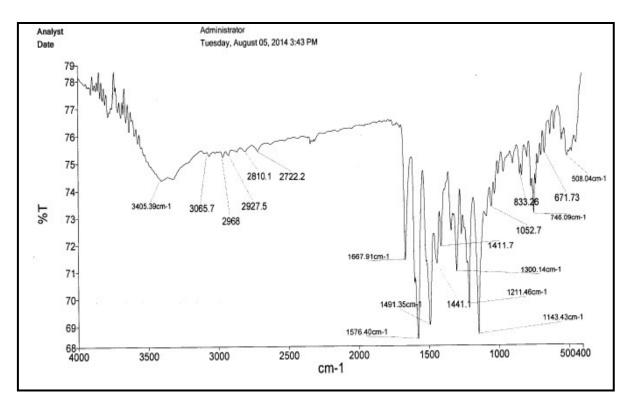
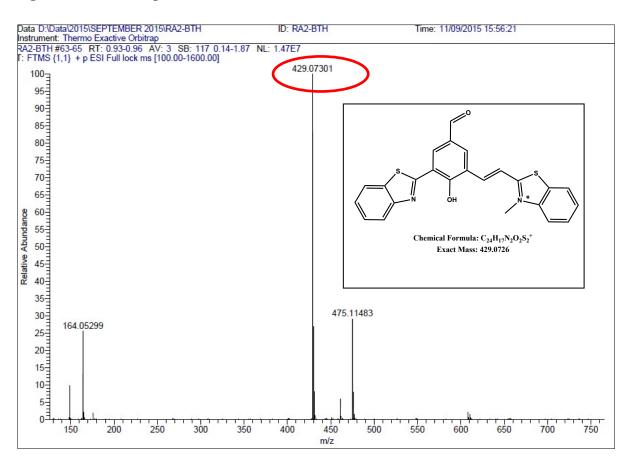





Figure S15: ¹³C NMR spectrum of R1

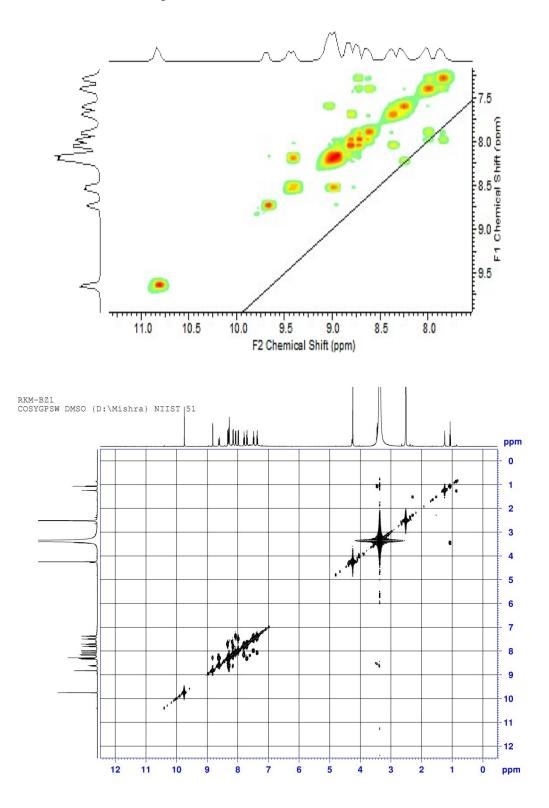


Figure S17: MASS spectrum of R1

Figure S18: ¹H-1H COSY spectrum of R1

S. No.	Probes	λ _{ex} and (Enol λ _{em} / Keto λ _{em}) of probes in nm	Shift in (Enol λ _{em} / Keto λ _{em}) of probes in presence of cysteine	Solvent used for detection	Detectio n limit	Respon se time	Interferenc e
ref 30		344 (436/ 521)	Enol (436) band decreases while keto. (521) one increases	HEPES buffer (at pH 7.4)		~3 min to 5 min.	НСу
ref 31		304 (377/487)	Enol (377) band decreases while keto. (487) one increases	EtOH/ph osphate buffer (20 mm, pH 7.4, 2:8 v/v)]	0.11 μΜ	9 min.	НСу
ref 32		330 (380 /467)	Both the band increases (380 /467)	DMSO: 10 mM HEPES (v/v 8 : 2)	2.8 μM	15 min	GSH
ref 33		305 (rhodol emission at 587 and HBT emission 454)	Rhodol emission at 587 decreases while HBT emission at 454 increases	DMF/ phosphat e buffer (3 : 7 v/v, 20 mM, pH 7.4)	44 nM	5 min For Cys	Same response for Hcy , red fluorescent for GSH
R1	Present Work	430 nm (492/625)	Enol(492) band decreases while keto. (625) one increases	ACN/ H ₂ O (3:7 v/v)	49 nm	~ 1.0 min	No interfere- nce from Hcy/GSH

Table S1: Comparison of Fluorescent ESIPT Probes for Cysteine based on HBT derivative