Supplementary Information

Facile Synthesis of Carbon-Doped Graphitic C₃N₄@MnO₂ with

Enhanced Electrochemical Performance

Qian Yuan Shan¹, Bo Guan¹, Shi Jin Zhu¹, Hai Jun Zhang^{2*}, Yu Xin Zhang^{13*}

¹College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P.R. China ² State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China.

³National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044, P.R. China

*E-mail: zhangyuxin@cqu.edu.cn (Dr. Y.X. Zhang); zhanghaijun@wust.edu.cn (Dr. H.J. Zhang)

Fig. S1 Nitrogen adsorption-desorption isotherms and the corresponding BJH pore-size distribution of (a) CCNM-1; (b) CCNM-3.

Table S1 The specific capacitance of the samples measured in 1 M Na_2SO_4 solution at the current

density of 0.2 A g⁻¹.

Samples	$g-C_3N_4$	MnO ₂ aggregation	CCNM-1	CCNM-2	CCNM-3
Cs (F g ⁻¹)	2	57	152	324	145

Table S2 Comparison of the capacitor performance with other MnO_2 based electrode reported in

Samples	Cs (F g ⁻¹)	Electrolyte	Test condition	Reference
Nanostructured MnO ₂	168	1 M Na ₂ SO ₄	0.2 A g ⁻¹	1
MnO2 with 1 wt.% SDS	187.8	1 M Na ₂ SO ₄	0.2 A g ⁻¹	2
MnO2/NiO@Ni	218	1 M KOH	3 A g-1	3
3D graphene @ CNT s@ MnO ₂	245	1 M Na ₂ SO ₄	0.5 A g ⁻¹	4
CeO ₂ @MnO ₂ core-shell heterostructure	255	1 M Na ₂ SO ₄	0.25 A g ⁻¹	5
PPy/graphene/MnO2 composite	258	1 M Na ₂ SO ₄	1 A g ⁻¹	6
MnO ₂ on hollow carbon spheres	263.5	1 M Na ₂ SO ₄	1 A g ⁻¹	7
NiO@MnO2 core/shell nanocomposite	266.7	2 M KOH	0.5 A g ⁻¹	8
Y/ZrO2@MnO2	283.1	0.5 M Na ₂ SO ₄	0.05 A g ⁻¹	9
Na ⁺ -intercalated MnO2	295	1 M Na ₂ SO ₄	1 A g ⁻¹	10
H-TiO2/C/MnO2	299.8	1 M Na ₂ SO ₄	0.5 A g ⁻¹	11
Spherical alpha-MnO2	328.4	1 M Na ₂ SO ₄	0.1 A g ⁻¹	12
Birnessite-type MnO2 nanoparticles	329	1 M Na ₂ SO ₄	0.2 A g ⁻¹	13
Co3O4@MnO2 core/shell arrays	960	1 M LiOH	0.1 A cm ²	14
CCNM02	324	1 M Na ₂ SO ₄	0.2 A g ⁻¹	This work

literature.

Reference

- 1. V. Subramanian, H. Zhu and B. Wei, J Power Sources, 2006, 159, 361-364.
- Y. Dai, J. L. Li, G. Yan, G. F. Xu, Q. R. Xue and F. Y. Kang, *J Alloy Compd*, 2015, 621, 86-92.
- 3. S. Saha, S. Chhetri, P. Khanra, P. Samanta, H. Koo, N. C. Murmu and T. Kuila, *J Energy Storage*, 2016, **6**, 22-31.
- 4. J. J. Chen, Y. Huang, X. Zhang, X. F. Chen and C. Li, *Ceram Int*, 2015, 41, 12680-12685.
- S. J. Zhu, J. Q. Jia, T. Wang, D. Zhao, J. Yang, F. Dong, Z. G. Shang and Y. X. Zhang, *Chem Commun*, 2015, **51**, 14840-14843.
- W. H. Sun, L. H. Chen, Y. B. Wang, Y. Q. Zhou, S. J. Meng, H. L. Li and Y. Q. Luo, Synth React Inorg M, 2016, 46, 437-444.
- C. P. Mao, S. G. Liu, L. Pang, Q. Sun, Y. Liu, M. W. Xu and Z. S. Lu, *Rsc Adv*, 2016, 6, 5184-5191.
- 8. J. J. Chen, Y. Huang, C. Li, X. F. Chen and X. Zhang, *Appl Surf Sci*, 2016, **360**, 534-539.
- 9. Y. Q. Zhang and Y. F. Zhai, *Rsc Adv*, 2016, 6, 1750-1759.
- Q. L. Ye, R. T. Dong, Z. H. Xia, G. R. Chen, H. L. Wang, G. J. Tan, L. Jiang and F. Wang, *Electrochim Acta*, 2014, 141, 286-293.
- 11. J. Di, X. C. Fu, H. J. Zheng and Y. Jia, J Nanopart Res, 2015, 17.
- 12. Y. Chen, W. Q. Qin, R. J. Fan, J. W. Wang and B. Z. Chen, *J Nanosci Nanotechno*, 2015, **15**, 9760-9765.
- X. Zhang, W. Miao, C. Li, X. Z. Sun, K. Wang and Y. W. Ma, *Mater Res Bull*, 2015, 71, 111-115.
- 14. W. L. Yang, Z. Gao, J. Ma, X. M. Zhang and J. Wang, *J Alloy Compd*, 2014, **611**, 171-178.