## Flame retardation behavior of polybenzoxazine/a-ZrP nanocomposites

Chunxia Zhao, Peng Li, Da He, Yuntao Li\*, Fan Lei and Hung-Jue Sue\*\*

## **Supporting Information**

Thermogravimetric analysis (TG) was used to calculate the amount of real  $\alpha$ -ZrP nanosheets in exfoliated  $\alpha$ -ZrP gel. TG was carried out at a heating rate of 10 °C/min and a flow rate of 60 mL/min under nitrogen and held at 900 °C for 60min.

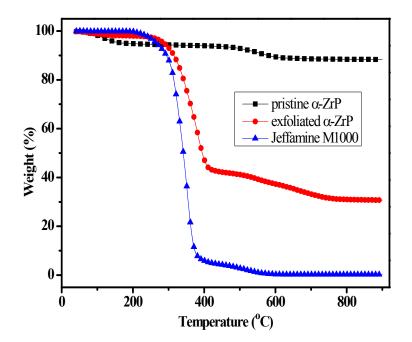



Fig.S1 TG curves of pristine α-ZrP, exfoliated α-ZrP and Jeffamine M1000 in nitrogen.

Jeffamine and  $\alpha$ -ZrP nanosheets were thermal degraded completely under the above condition. The residues amount of pristine  $\alpha$ -ZrP, Jeffamine and exfoliated  $\alpha$ -ZrP gel were 88.3%, 0.2% and 30.7%, respectively (Table S2). The pristine  $\alpha$ -ZrP was unexfoliated  $\alpha$ -ZrP. The real exfoliated  $\alpha$ -ZrP nanoplatelets could be calculated through the followed equation.

$$\frac{88.3\%}{100\%} = \frac{30.7\% - 0.2\%}{x}$$

*x* is the weight ratio of real  $\alpha$ -ZrP nanoplatelets in per 100 g exfoliated  $\alpha$ -ZrP gel. The *x* was calculated to be 34.5%. So, Jeffamine in exfoliated  $\alpha$ -ZrP gel was 65.5% (1-34.5%). Then, the weight ratio of  $\alpha$ -ZrP to Jeffamine M1000 in exfoliated  $\alpha$ -ZrP gel was calculated to be 0.53 to 1 (34.5%:65.5%).

Table S1 Residuals of samples at 900 °C from TG curves

| Sample           | Residuals at 900°C (%) |  |  |  |
|------------------|------------------------|--|--|--|
| Pristine α-ZrP   | 88.3                   |  |  |  |
| Exfoliated α-ZrP | 30.7                   |  |  |  |
| Jeffamine-M1000  | 0.2                    |  |  |  |

Table S2 Thermal parameters of PBa and its nanocomposites.

| Samples         | T <sub>initial</sub> (°C) |       | T <sub>max</sub> (°C) |       | Char Residual at 700°C |       |
|-----------------|---------------------------|-------|-----------------------|-------|------------------------|-------|
|                 | Air                       | $N_2$ | Air                   | $N_2$ | Air                    | $N_2$ |
| Pristine PBa    | 337                       | 325   | 623                   | 384   | 0.5                    | 34.6  |
| PBa/a-ZrP-2.8%  | 348                       | 333   | 625                   | 379   | 3.1                    | 51.4  |
| PBa/a-ZrP-4.6%  | 347                       | 336   | 632                   | 386   | 4.0                    | 54.1  |
| PBa/α-ZrP-8.4%  | 348                       | 335   | 631                   | 384   | 5.8                    | 54.0  |
| PBa/M1000-15.9% | 291                       | 295   | 346,613               | 350   | 0.6                    | 34.0  |