Supplementary Data

MRM-based strategy for the homolog-focused detection of minor ginsenosides from Notoginseng Total Saponins by ultraperformance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry

Jinfeng Chen, ${ }^{a}$ Xiaoyu Guo, ${ }^{\text {a }}$ Yuelin Song, ${ }^{\text {b }}$ Mingbo Zhao, ${ }^{a}$ Pengfei $T{ }^{\text {a }}$ and Yong Jiang *a

[^0]
Contents of Supplementary Data

1. Characterization of the saponins in NGTS by integrating MRM-IDA-EPI and ITTOF/MS ${ }^{\mathrm{n}}$ analyses

Fig. S1 The extracted ion chromatograms (EICs) of peaks 19, 23, and 24 and their corresponding mass profiles obtained by the stepwise MRM (A) and LC-IT-TOF/MS ${ }^{\text {n }}$ analyses (B); A1: EICs of $m / z 861.4>815.5$ and $863.3>817.4 ;$ A2: MS^{2} spectrum of m / z 861.4; A3: MS^{2} spectrum of m / z 863.3; A4: MS ${ }^{2}$ spectrum of m / z 865.2; B1, EICs of $m / z 861.4820$ and 863.4987; B2: MS^{1} spectrum of m / z 861.4820; B3: MS^{2} spectrum of $m / z 861.4820 ; \mathrm{B} 4: \mathrm{MS}^{1}$ spectrum of $m / z 863.4987$; $\mathrm{B} 5: \mathrm{MS}^{2}$ spectrum of m/z 863.4987.

Table S1 Quality inspection report of NGTS.
Table S2 Translation of the quality inspection report of NGTS
Table S3 The excluded ions list for the full san on LC-IT-TOF/MS
Table S4 The preferred ions list for the full san on LC-IT-TOF/MS
Table S5 Detailed LC/MS data for characterization of the ginsenosides in NGTS

1. Characterization of the saponins in NGTS by integrating MRM-IDA-EPI and IT-TOF/MS ${ }^{\text {n }}$ analyses

Combining the MRM-IDA-EPI and IT-TOF/MS ${ }^{\mathrm{n}}$ analyses, a total of 112 compounds were characterized, among which, peaks $66,67,69,86,88,89,90,94,95,98,109$, and 110 were characterized by comparison with the reference compounds; peaks 19 , 23,24 , and 88 were characterized in the manuscript. So, the detailed descriptions of the other components are presented here.

Peaks 1 and 21 shared the same molecular composition of $\mathrm{C}_{47} \mathrm{H}_{82} \mathrm{O}_{19}$ and similar fragmentation behaviors. The identical fragment ions at $m / z 493.38$ [A-H] ${ }^{-}, 417.2$ [A-H- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$, and $391.4\left[\mathrm{~A}-\mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}\right]^{-}$were observed, suggesting their sapogenin as [PPT 16]. The prominent neutral losses of $162.05 \mathrm{Da} \times 2$ and 132.04 Da indicated the possible presence of a xylosyl and two glucosyl substituents. Besides, the prominent product ions at $m / z 817.48$ [M-H-xyl]- and 787.47 [M-H-glc] ${ }^{-}$ suggested peaks 1 and 21 to be bidesmosidic saponins. Thus, peaks 1 and 21 were assigned as [PPT 16]-6-glucosyl-xylosyl-20-glucoside or its isomer, respectively. ${ }^{1}$ Peaks 2, 4, and 7 shared the same elemental composition of $\mathrm{C}_{42} \mathrm{H}_{74} \mathrm{O}_{16}$ and sequential neutral losses of $162 \mathrm{Da} \times 2$. In view of other fragment ions at $m / z 415.2$ $\left[\mathrm{A}-\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}, 403.3\left[\mathrm{~A}-\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{-}$, and $391.4\left[\mathrm{~A}-\mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$, their structures were assigned as vinaginsenoside or its isomers, respectively. ${ }^{2}$ The HR-MS/MS spectral profiles of peaks 3 and 5 suggested they possess the identical molecular composition of $\mathrm{C}_{47} \mathrm{H}_{82} \mathrm{O}_{20}$. The sequential neutral losses of 132 Da and 162 $\mathrm{Da} \times 2$ indicated that they were substituted by one xylosyl and two glucosyl groups. The presence of the fragment ions at $m / z 803.4$ [M-H-glc] ${ }^{-}$and 833.2 [M-H-xyl] indicated peaks 3 and 5 were bidesmosidic saponins. Furthermore, the fragment ions at $m / z 509.3,415.3$, and 403.3 proposed peaks 3 and 5 as [PPT 21]-6-glucosyl-xylosyl-20-glucoside or its isomer, respectively. ${ }^{2}$ The molecular formulas of peaks 6 , 9, and 11 were deduced as $\mathrm{C}_{48} \mathrm{H}_{84} \mathrm{O}_{20}$ based on their HR-MS/MS data. Among them, peaks 6 and 9 shared the same successive neutral losses of $162.05 \mathrm{Da} \times 2$ and 146.06 Da , along with the deprotonated aglycone ion $\left([\mathrm{A}-\mathrm{H}]^{-}\right)$at m / z 509.3778. The identical fragment ion at $m / z 415.3$, originating from the $58 \mathrm{Da}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ loss from the $[\mathrm{A}-\mathrm{H}]^{-}$
ion, further assigned peaks 6 and 9 as [PPT 21]-6-rhamnosyl-20-glucosyl-glucoside or [PPT 21]-6-rutinosyl-20-glucoside, respectively. ${ }^{2}$ Whereas peak 11 was plausibly characterized as vinaginsenoside R_{13} or its isomer with the observation of the three stepwise neutral losses of $162 \mathrm{Da} \times 3 .{ }^{2}$ The formate anions of peaks 12,18 , and 45 were observed at m / z 993.52, corresponding to the elemental composition of $\mathrm{C}_{47} \mathrm{H}_{80} \mathrm{O}_{19}$. In combination with the prominent product ions at $\mathrm{m} / \mathrm{z} 403.2$ and 391.3, peak 12 was tentatively identified as notoginsenoside H or its isomer., ${ }^{4,5}$ As the fragment ions at $m / z 553.3$ and 415.3 were the diagnostic ions of [PPT 13], peak 18 was assigned as sanshichisaponin G or its isomer. ${ }^{7}$ In contrast to peaks 12 and 18 , the prominent ion at $m / z 477.3828$ indicated peak 45 was substituted by a glucosyl and a rutinosyl moieties. ${ }^{7}$ Peaks 14, 66, and 79 exhibited the same molecular composition of $\mathrm{C}_{47} \mathrm{H}_{80} \mathrm{O}_{18}$ and the sequential neutral losses of 132.04 Da and $162.05 \mathrm{Da} \times 2$, indicating that these compounds were substituted by two glucosyl and a xylosyl/arabinosyl residues. Among them, peak 66 was confirmed as notoginsenoside R_{1} by the reference compound. The product ion at $m / z 369.2\left[\mathrm{~A}-\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}\right]^{-}$ suggested the sapogenin of peak 14 as [PPD 8]. ${ }^{8-11}$ However, the predominant product ions at $\mathrm{m} / \mathrm{z} 799.4809$ [M-H-xyl]-, 637.4245 [M-H-xyl-glc] ${ }^{-}$, 475.3741 [M-H-xyl$2 \mathrm{glc}]^{-}$, and 391.3 [A-H-C6 $\left.\mathrm{H}_{12}\right]^{-}$proposed the sapogenin of peak 79 is [PPT 6]. ${ }^{3}$ Peaks 15,31 , and 51 gave the same pseudo-molecular ion at $m / z 861.48$, along with a sequential neutral losses of $162.05 \mathrm{Da} \times 2$. The fragment ions at $\mathrm{m} / \mathrm{z} 403.4$ and 391.3 suggested the sapogenins of peak 15 are [PPT 11] or [PPT 14]. ${ }^{5}$ Similarly, the unique product ions at $m / z 421.2$ and 391.3 proposed peak 51 as di-glucosidated product of [PPT 11] or [PPT 14]. ${ }^{5,6}$ However, there were no obvious fragment ions to deduce the sapogenin of peak 31, which was plausibly assigned as [PPT 11], [PPT 12], [PPT 13], [PPT 14] or [PPD 10]. ${ }^{3-5,12}$ Peaks 16, 46, 49, and 59 exhibited the same molecular composition of $\mathrm{C}_{42} \mathrm{H}_{74} \mathrm{O}_{15}$, but the different mass fragmentation behaviors. The mass profile of peak 16 showed the stepwise neutral losses of $162 \mathrm{Da} \times 2$, along with the aglycone ion at $m / z 493.3832$. With the additional cleavages of 58 Da and 102 Da , peak 16 was deduced as diglucosidated conjugate of [PPT 15] or [PPT 16]. ${ }^{1}$ Peaks 46, 49, and 59 displayed the sapogenin ion at $m / z 509.37$, along with a sequential neutral
losses of $146 \mathrm{Da}, 162 \mathrm{Da}$, and 118 Da . Thus, peaks 46, 49, and 59 were characterized as quinquenoside L_{9} or its isomers, respectively. ${ }^{2}$ Peaks 20 and 33 afforded the quasimolecular ion at $m / z 963.55$, corresponding to an elemental composition of $\mathrm{C}_{48} \mathrm{H}_{84} \mathrm{O}_{19}$. Their negative MS^{n} spectra gave the dominant signals at $m / z 801.49,655.43$, and 493.38, suggesting the stepwise neutral cleavages of a rutinosyl (308.08 Da) and a glucosyl (162.05 Da) moieties. In addition, the fragment ion at $\mathrm{m} / \mathrm{z} 417.6$ [A-H- $\mathrm{H}_{2} \mathrm{O}-$ $\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$proposed peaks 20 and 33 as [PPT 16]-20-glucosyl-6-rutinoside or its isomer, respectively. ${ }^{1}$ Peak 22 yielded the formate anion at $m / z 731.3854$, along with the product ion at $m / z 553.2$ and 391.4, indicating its structure as [PPT 1]- O-xylosyl- O glucoside. ${ }^{11}$ The elemental composition of peaks $25,30,40,53,71$, and 75 were elucidated as $\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{O}_{19}$ according to their HR-MS/MS data. Among them, peaks 25, 30 , and 40 afforded the same neutral losses of 308 Da and 162 Da , resulting from the stepwise cracking a rutinosyl and a glucosyl groups. Moreover, they shared the same deprotonated aglycone ion at m / z 491.3, corresponding to the aglycone of [PPT 10], [PPT 11], [PPT 12], [PPT 13], [PPT 14], or [PPD 10]. ${ }^{3}$ The sequential neutral cleavages of 18 Da proposed peak 25 as majoroside F_{6} or its isomer. ${ }^{5}$ While, peaks 30 and 40 showed a neutral loss of $58 \mathrm{Da}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$, which was the typical C - 17 side chain cleavage of [PPT 13]. ${ }^{3}$ Peaks 53, 71, and 75 exhibited the similar deprotonated aglycone ions at m / z 475.37, generating from three sequential neutral losses of 162.05 Da. Combining with another neutral loss of $88 \mathrm{Da}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$, peaks 53 and 71 were supposed as notoginsenoside N or its isomer, respectively. ${ }^{3}$ While the identical fragment ion at $m / z 387.1\left[A-\mathrm{H}^{-} \mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}\right]^{-}$deduced the sapogenins of peak 75 are [PPD 8] or [PPD 9]. ${ }^{8-10}$ Peaks 26, 35, 43, and 50 exhibited a [M-H] ion at $m / z ~ 813.4$, along with a $[\mathrm{A}-\mathrm{H}]^{-}$ion at $m / z 489.5$, resulting from the sequential neutral losses of $162 \mathrm{Da} \times 2$. In addition, the identical fragment ion at $m / z 391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}^{2}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right]^{-}$ proposed their structures as [PPT 8]-6,20-di-O-glucoside or its isomers, respectively. ${ }^{9}$ Peak 27 showed an $[\mathrm{M}-\mathrm{H}]^{-}$ion at $m / z 699.3791$, corresponding to a molecular formula of $\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{O}_{15}$. In combination of the stepwise neutral losses of 162 Da and 146 Da , it was proposed as [PPT 1]-O-rutinoside. ${ }^{11}$ Peaks 28, 36, 39, 44, and 55 exhibited the same molecular composition of $\mathrm{C}_{41} \mathrm{H}_{72} \mathrm{O}_{15}$ and mass profiles. The
deprotonated aglycone ions at $m / z 509.37$ suggested their sapogenins could be [PPT 21], [PPT 22], or [PPT 23]. With the observation of identical neutral losses of 118.06 $\mathrm{Da}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right), 88.05 \mathrm{Da}$, and 58.04 Da , their sapogenins was determined as [PPT 21]. Finally, they were assigned as the [PPT 21]-20-xylosyl-3-glucoside or its isomers, respectively, along with the separate neutral losses of 132 Da (xylosyl) and 162 Da (glucosyl). ${ }^{3}$ All the molecular composition of peaks 29, 32, 54, 67, 95, 96, and 108 were the same as $\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{O}_{18}$, calculated from their HR-MS/MS data. Among them, peaks 67 and 95 were respectively confirmed as ginsenosides Re and Rd by comparison with the reference compounds. Peak 29 exhibited a stepwise neutral loss of 146 Da and 162 Da . Besides, the product ion at $m / z 391.3$ generated from the $C-17$ side chain cleavage of a $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}(98.07 \mathrm{Da})$ unit indicated its sapogenin is [PPT 8]. ${ }^{9}$ The product ions of peak 32 were highly consistent with those of peak 29 , however, the neutral loss of $98.07 \mathrm{Da}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right)$ was not observed. The skeleton of peak 32 was thus tentatively determined as [PPT 8] or [PPT 9] . ${ }^{13}$ Similarly, the deprotonated aglycone ion at $m / z 475.3726$ and the product ion at $m / z 391.3$ confirmed compound 54 as ginsenoside B_{2} or chikusetsusaponin FK_{1} or its isomer. ${ }^{3}$ Peaks 96 and 108 showed the similar cracking patterns and deprotonated aglycone ions at $\mathrm{m} / \mathrm{z} 459.38$ with peak 95 . Thus peaks 96 and 108 were plausibly characterized as the isomers of ginsenoside Rd. Peaks 34 and 42 showed the same deprotonated molecular ion at m / z 801.46, corresponding to an elemental composition of $\mathrm{C}_{41} \mathrm{H}_{70} \mathrm{O}_{15}$. Besides, they shared the similar product ions at $m / z 593.36$ and 507.3 , which were in high accordance with those of [PPT 19]. With the observation of sequential losses of 132 Da and 162 Da , peaks 34 and 42 were plausibly assigned as floralginsenoside C or its isomer, respectively. ${ }^{13}$ Similarly, peak 37 gave the deprotonate molecular ion at m / z 861.4829, corresponding to the formula composition of $\mathrm{C}_{42} \mathrm{H}_{72} \mathrm{O}_{15}$. With the observation of neutral losses of $146 \mathrm{Da}, 162 \mathrm{Da}$, and 58 Da , it was plausibly assigned as [PPT 19]-O-rhamnosyl-O-glucoside. ${ }^{13}$ The molecular formulas of peaks 38 and 41 were deduced as $\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{O}_{20}$ based on their HR-MS/MS data (Table 1). In combination with the neutral losses of 162 Da (glucosyl), 308 Da (rutinosyl), peak 38 was plausibly determined as floralginsenoside I or floralginsenoside J or its isomer. ${ }^{15,16}$

While peak 41 was characterized as [PPD 12] or [PPT 16]-O-rhamnosyl-O-glucosylO - glucuronide with the $[\mathrm{A}-\mathrm{H}]^{-}$ion at m / z 493.3. ${ }^{13}$ Likewise, peak 47 was characterized as notoginsenoside SP_{8} or its isomer. Peaks 48, 56, and 72 shared the same formula of $\mathrm{C}_{48} \mathrm{H}_{80} \mathrm{O}_{19}$, while displayed the different mass cracking pathways. In combination of the prominent ions at $m / z 797.3$ [M-H-glc] and 489.2 [M-H-glcrut] ${ }^{-}$, peaks 48 and 56 were tentatively assigned as [PPT 8] or [PPT 9]- O-rutinosyl- O glucoside, respectively. ${ }^{9}$ While peak 72 was characterized as notoginsenoside G with the identical neutral losses of $162 \mathrm{Da} \times 2$ and $84 \mathrm{Da} .{ }^{17}$ The chemical composition of peak 52 was calculated as $\mathrm{C}_{41} \mathrm{H}_{72} \mathrm{O}_{13}$ from the quasi-molecular ion at m / z 817.4975. With the observation of product ions at $m / z 639.2[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$and 477.2 [M-H-xyl-glc] $]^{-}$, it was tentatively assigned as [PPD 10]-O-glucosyl- O-xyloside. ${ }^{9}$ Likewise, peak 57 was plausibly assigned as notoginsenoside A or its isomer, ${ }^{3}$ and peak 58 was plausibly characterized as [PPD 12] or [PPT 16]-O-glucosyl- O xyloside. ${ }^{1,14}$ Peaks 60 and 64 exhibited the similar deprotonated molecular ions at m / z 1093.57 and aglycone ions at $m / z 475.38$. However, the prominent fragment ions at $m / z 961.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$and $931.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$suggested peak 60 as [PPD 8]-3-glucosyl-glucosyl-20-glucosyl- arabinoside or [PPD 9]-3-glucosyl-glucosyl-20-glucosyl-xyloside, ${ }^{9,10}$ whereas the sapogenin of peak 64 was determined as [PPT 6] with the observation of neutral loss $84.09 \mathrm{Da}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) \cdot{ }^{3}$ Peak 61 gave the molecular composition of $\mathrm{C}_{54} \mathrm{H}_{92} \mathrm{O}_{23}$, calculated from the quasi-molecular ion at m / z 1107.5947. With the prominent fragment ions at m / z 961.5221, 799.4784, 637.4220, and 475.3652, peak 61 was plausibly assigned as yesanchinoside E or its isomer. ${ }^{3}$ The molecular composition of peak 62 was $\mathrm{C}_{47} \mathrm{H}_{77} \mathrm{O}_{18}$, calculated from the HR-MS/MS data. Besides, the deprotonated aglycone ion at $m / z 473.2$ was yielded by sequentially cracking two glucosyls and one xylosyl units. With the observation of the additional loss of $84 \mathrm{Da}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$, peak 62 was concluded to be [PPT 5]-di- O-glucosyl-Oxyloside. ${ }^{3}$ The molecular composition of peak 63 was calculated as $\mathrm{C}_{54} \mathrm{H}_{94} \mathrm{O}_{25}$ from the $[\mathrm{M}-\mathrm{H}]^{-}$ion at m / z 1141.6044. The prominent fragment ions at $m / z 979.5341$ [M-H-glc] ${ }^{-}, 817.4847$ [M-H-2glc] $]^{-}, 655.4341$ [M-H-3glc] ${ }^{-}$, and 493.3827 $[\mathrm{M}-\mathrm{H}-4 \mathrm{glc}]^{-}$suggested peak 63 as quinquenoside L_{16} or its isomer. ${ }^{1,14}$ Peaks 65 and

82 shared the similar molecular composition of $\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{14}$, along with the successive neutral losses of $162 \mathrm{Da} \times 2$ (glucosyl). With observation of the significant neutral loss of $84 \mathrm{Da}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$, the sapogenin of peak 65 was assigned as [PPT 4] or [PPT 5]. ${ }^{17,18}$ Whereas peak 82 was determined as diglucosidated product of [PPT 4] due to the obvious neutral loss of $28 \mathrm{Da}(\mathrm{CO}) .{ }^{17}$ Compounds 68 and 73 shared the same formula composition $\left(\mathrm{C}_{41} \mathrm{H}_{70} \mathrm{O}_{14}\right)$ and mass fragmentation pathways. The identical fragment ions at $m / z 491.5[\mathrm{~A}-\mathrm{H}]^{-}, 415.3\left[\mathrm{~A}-\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$, and 391.4 [A-H- $\left.\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$confirmed their sapogenin as [PPT 12]. With the observation of stepwise neutral losses of 132 Da and 162 Da , compounds 68 and 73 were supposed as vinaginsenoside R_{11} or floraginsenoside D , respectively. ${ }^{3}$ Peak 69 was identified as ginsenoside Rg_{1}, using the reference compound. As the similar mass profiles, peaks 87 and 101 were assigned as the isomers of ginsenoside Rg_{1}. Compounds $70,74,86$, and 91 shared the same molecular composition of $\mathrm{C}_{41} \mathrm{H}_{70} \mathrm{O}_{13}$ and mass cracking patterns. Among them, peak 86 was identified as ginsenoside F_{3} by comparison with the reference component. Hence, peaks 70, 74, and 91 were determined as the notoginsenoside R_{2} or its isomers, respectively. Similarly, peaks 76 and 84 were tentatively proposed as [PPT 6]-6-acetylglucosyl-20-glucoside, [PPT 6]-6-glucosyl-20-acetylglucoside or [PPT 6]-20-acetyl-6-glucosyl-glucoside, respectively. ${ }^{3}$ Peak 77 gave the pseudo-molecular ion at m / z 1091.6028, corresponding to the chemical formula of $\mathrm{C}_{54} \mathrm{H}_{92} \mathrm{O}_{22}$. With the observation of stepwise neutral losses of $162.05 \mathrm{Da} \times$ 3, it was assigned as gynosaponin V or its isomer. ${ }^{19}$ Peak 78 gave the formula composition of $\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{10}$, along with the neutral loss of 162 Da . With an additional loss of 58 Da , peak 78 was characterized as glucosidated conjugate of [PPT 12]. ${ }^{3}$ The molecular composition of peaks 80 and 81 were both calculated as $\mathrm{C}_{59} \mathrm{H}_{100} \mathrm{O}_{27}$ based on the $[\mathrm{M}-\mathrm{H}]^{-}$ion at m / z 1239.64. The prominent product ions at m / z 945.53, 783.48, 621.44, and 459.38 suggested their structures as [PPD 7]-3-glucosyl-glucosyl-20-glucosyl-glucosyl-arabinoside/xyloside or [PPD 7]-3-glucosyl-glucosyl-glucosyl-20-glucosyl-arabinoside/xyloside, respectively. ${ }^{19}$ The HR-MS/MS data indicated the molecular formula of peak 83 as $\mathrm{C}_{54} \mathrm{H}_{90} \mathrm{O}_{23}$. Its MS^{2} spectrum displayed the fragment ions at m / z 943.5105, 781.4640, 619.4055, and 457.3616, originating from the
sequential neutral losses of glucosyl (162.05 Da). Therefore, it was characterized as [PPD 3]-3-glucosyl-glucosyl-20-glucosyl-glucoside or epoxynotoginsenoside A or its isomer. ${ }^{17,21}$ The molecular composition of peaks $85,89,92,110$, and 112 were deduced as $\mathrm{C}_{42} \mathrm{H}_{72} \mathrm{O}_{13}$, calculated from the HR-MS/MS data. Peaks 89 and 110 were separately assigned as $20(S)$-ginsenoside Rg_{2} and $20(S)$-ginsenoside Rg_{3}, using the reference compounds. Peaks 85 and 92 exhibited the similar fragment ions at m / z 637.43 and 475.37, suggesting the presence of a rhamnosyl and a glucosyl residues. The identical $\left[\mathrm{A}-\mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$fragment ion at $m / z 391.28$ supposed them as [PPT 6]-3(6,20)-glucosyl-rhamnoside or [PPT 6]-6-rhamnosyl/glucosyl-20glucoside/rhamnoside, respectively. ${ }^{3}$ On the contrary, the MS^{2} spectrum of peak 112 displayed the identical product ions at $m / z 637.43$ and 459.38 , producing from the successive losses of 162.05 Da (glucosyl residues). Another fragment ion at $\mathrm{m} / \mathrm{z} 375.2$ [A-H-C $\left.\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$proposed peak 112 as ginsenoside F_{2} or its isomer. ${ }^{19}$ Similarly, peak 97 was assigned as [PPT 6]-6,20-di- O-xyloside with the sequential neutral losses of 132 Da. ${ }^{3}$ Peak 93 gave the deprotonated aglycone ion at $m / z 443.1$, resulting from three step wise neutral losses of 162 Da . Hence, it was confirmed as vinaginsenoside R_{3} or its isomer. ${ }^{18}$ Likewise, peak 103 was assigned as [PPD 7]-3-glucosyl-20-rutinoside or [PPD 7]-3-glucosyl-glucosyl-20-rhamnoside from its product ions at $m / z 783.4816$ [M-H-rha] ${ }^{-}$, 621.4333 [M-H-rha-glc] $]^{-}$, and 459.3828 [M-H-rha-2glc] ${ }^{-} .{ }^{19}$ Compounds 99 and 111 exhibited the same molecular formula of $\mathrm{C}_{47} \mathrm{H}_{80} \mathrm{O}_{17}$ and the mass cracking patterns. Their MS^{2} spectra gave a $[\mathrm{A}-\mathrm{H}]^{-}$ion at m / z 459.3782, generating from the sequential losses of a xylosyl (132.04 Da) and two glucosyls $(162.05 \mathrm{Da})$ units. The identical fragment ion at $\mathrm{m} / \mathrm{z} 375.2$ resulting from $C-17$ chain cleavage indicated their sapogenin are [PPD 7]. ${ }^{19}$ The molecular composition of peak 100 was $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{12}$, calculated from the formic anion at m / z 795.4539. Besides, the two major product ions at $m / z 617.3$ and 455.3 were originated from the successive losses of a xylosyl (132 Da) and a glucosyl (162 Da) groups, which characterized peak 100 as [PPD 2]-O-xylosyl- O-glucoside. Peaks 102 and 107 displayed the same molecular composition of $\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{13}$ and the same successive neutral losses of 162 Da (glucosyl). The additional fragment ion at $\mathrm{m} / \mathrm{z} 373.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$further
confirmed peaks 102 and 107 as ginsenoside Rg_{9} or its isomer, respectively. ${ }^{19}$ Compound 105 exhibited a $[\mathrm{M}-\mathrm{H}]^{-}$ion at $m / z 751.4620$, along with a serious product ions at $m / z 619.3$ and 457.4, corresponding to sequential neutral loss of xylosyl (132 $\mathrm{Da})$ and glucosyl (162 Da). Thus it was identified as [PPD 4]- O-xylosyl- O-glucoside. Likewise, compound 106 was tentatively assigned as chikusetsusaponin LT_{8} or its isomer.

References

1 J. D. Park, Y. H. Lee, and S. I. Kim, Arch. Pharm. Res., 1998, 21, 615-617.
2 N. M. Duc, R. Kasai, K. Ohtani, A. Ito, N. T. Nham, K. Yamasaki, and O. Tanaka, Chem. Pharm. Bull., 1994, 42, 634-640.

3 S. Yahara, R. Kasai, and O. Tanaka, Chem. Pharm. Bull., 1977, 25, 2041-2047.
4 P. Y. Liao, D. Wang, Y. J. Zhang, and C. R. Yang, J. Agric. Food Chem., 2008, 56, 1751-1756.

5 M. Zhou, M. Xu, D. Wang, H. T. Zhu, and C. R. Yang, Y. J. Zhang, Helv. Chim. Acta, 2011, 94, 2010-2019.

6 S. Nakamura, S. Sugimoto, H. Matsuda, and M. Yoshikawa, Heterocycles, 2007, 71, 577-588.

7 J. T. Chen, H. Z. Li, D. Wang, Y. J. Zhang, and C. R. Yang, Helv. Chim. Acta, 2006, 89, 1442-1448.

8 K. K. Li, C. M. Yao, and X. W. Yang, Planta Med., 2012, 78, 189-192.
9 N. M. Duc, R. Kasai, K. Yamasaki, N. T. Nham, and O. Tanaka, Stud. Plant Sci., 1999, 6, 77-82.

10 J. H. Wang, W. Li, Y. Tezuka, S. Kadota, and X. Li, J. Asian Nat. Prod. Res., 2001, 3, 123-130.

11 L. Z. Wu, L. B. Wang, H. Y. Gao, B. Wu, X.M. Song, and C. R. Yang, Fitoterapia, 2007, 78, 556-560.

12 D. Q. Wang, J. Fan, B. S. Feng, S. R. Li, X. B. Wang, C. R. Yang, and J. Zhou, Acta Pharm. Sin., 1989, 24, 593-599.

13 R. W. Teng, H. Z. Li, D. Z. Wang, and C. R. Yang, Helv. Chim. Acta, 2004, 87, 1270-1278.

14 J. Chen, R. Zhao, Y. M. Zeng, H. Meng, W. J. Zuo, X. Li, and J. H. Wang, J. Asian Nat. Prod. Res., 2009, 11, 195-201.

15 S. Nakamura, S. Sugimoto, H. Matsuda, and M. Yoshikawa, Chem. Pharm. Bull., 2007, 55, 1342-1348.

16 M. Yoshikawa, S. Sugimoto, S. Nakamura, and H. Matsuda, Chem. Pharm. Bull., 2007, 55, 571-576.

17 K. K. Li, C. M. Yao, and X. W. Yang, Planta Med., 2012, 78, 189-192.
18 K. Zou, S. Zhu, R. Meselhy, C. Tohda, S. Q. Cai, and K. Komatsu, J. Nat. Prod., 2002, 65, 1288-1292.

19 I. H. Park, S. B. Han, J. M. Kim, L. Z. Piao, S. W. Kwon, N. Y. Kim, T. L. Kang, M. K. Park, and J. H. Park, Arch. Pharm. Res., 2002, 25, 837-841.

20 J. B. Wan, Q. W. Zhang, S. J. Hong, J. Guan, W. C. Ye, S. P. Li, M. Y. S. Lee, and Y. T. Wang, Molecules, 2010, 15, 8169-8176.

21 C. Yuan, F. X. Xu, X. J. Huang, S. P. Li, and Q. W. Zhang, Chin. J. Nat. Med., 2015, 13, 303-306.

Fig. S1 The extracted ion chromatograms (EICs) of peaks 19, 23, and 24 and their corresponding mass profiles obtained by the MRM-IDA-EPI (A) and LC-ITTOF/MS ${ }^{\mathrm{n}}$ analyses (B); A1: EICs of $m / z 861.4>815.5$ and $863.3>817.4$; A2: MS^{2} spectrum of $m / z 861.4 ; \mathrm{A} 3: \mathrm{MS}^{2}$ spectrum of $m / z 863.3$; A4: MS^{2} spectrum of m / z 865.2; B1, EICs of $m / z 861.4820$ and 863.4987; B2: MS ${ }^{1}$ spectrum of $m / z 861.4820$; B3: MS^{2} spectrum of m / z 861.4820; B4: MS^{1} spectrum of $m / z 863.4987$; B5: MS^{2} spectrum of $m / z 863.4987$.

Table S1 Quality inspection report of NGTS.

Table S2 Translation of the quality inspection report of NGTS

Test report number	201110577	Size	$230 \mathrm{~kg} /$ piece
Name	Notoginseng total saponins (NGTS)	Applicant	Material medica workshop
Batch number	HB20111005	Applicant data	Oct. 26, 2011
Counts	Ten	Sampling Date	Oct. 26, 2011
Source	Material medica workshop	Report date	Nov. 28, 2011
Basis	Chinese Pharmacopoeia 2010 Edition, monograph of Notoginseng total saponins		
Inspecting item	Standard basis	Test results	Individual conclusion
Description	Off-white or light-yellow amorphous powder	Light-yellow amorphous powder	Qualified
Identification	The chromatogram obtained with the test solution should contain the peaks with the same retention times corresponding to those of notoginsenoside R_{1}, ginsenosides $\mathrm{Rg}_{1}, \mathrm{Re}, \mathrm{Rb}_{1}$, and Rd obtained with the reference extract of NGTS.	The chromatogram obtained with the test solution contains the peaks with the same retention times corresponding to those of the references of notoginsenoside R_{1}, ginsenosides $\mathrm{Rg}_{1}, \mathrm{Re}, \mathrm{Rb}_{1}$, and Rd.	Qualified
Test			
Loss on drying	When dried to constant weight at $80^{\circ} \mathrm{C}$, loses not more than 5.0% of its weight.	0.9\%	Qualified

Residue on ignition	Not more than 0.5 per cent.	0.4 per cent	Qualified
Colour of solution	Dissolve a quantity of weight with water to produce a solution containing 25 mg per mL . Not more intense than yellow reference solution No. 4 .	No. 4 yellow	Qualified
Heavy metal and	Not more than 5 ppm of Lead [Pb], 0.3 ppm of Carmium	Qualified	Qualified
harmful elements	[Cd], 2 ppm of Arsenic [As], 0.2 ppm of Mercury [Hg] and		
	20 ppm of Copper $[\mathrm{Cu}]$		
Assay			
Notoginsenoside \mathbf{R}_{1}	Not less than 5.0 per cent	6.2 per cent	Qualified
Ginsenoside $\mathbf{R g}_{1}$	Not less than 25.0 per cent	26.6 per cent	Qualified
Ginsenoside Re	Not less than 2.5 per cent	4.1 per cent	Qualified
Ginsenoside $\mathbf{R b}_{1}$	Not less than 30.0 per cent	32.5 per cent	Qualified
Ginsenoside Rd	Not less than 5.0 per cent	6.6 per cent	Qualified
$\left[\mathbf{R}_{1}+\mathrm{Rg}_{1}+\mathbf{R e}+\mathrm{Rb}_{1}+\mathbf{R d}\right]$	Not less than 75.0 per cent	76.0 per cent	Qualified
Fingerprint	According to the Similarity evaluation system for chromatography fingerprint of TCM, calculate the similarity of the retention times of the peaks after initial 5 minutes	Qualified	Qualified

between the test solution fingerprint and the reference
fingerprint, not less than 0.95 .

Microorganism limits

Bacterial counts	Not more than $1000 \mathrm{cfu} / \mathrm{g}$	Less than $10 \mathrm{cfu} / \mathrm{g}$	Qualified
Mold counts	Not more than $100 \mathrm{cfu} / \mathrm{g}$	Less than $10 \mathrm{cfu} / \mathrm{g}$	Qualified

Conclusion: Various index accorded with the quality standard and inspection of NGTS from the Chinese pharmacopoeia [2010 edition].

Table S3 The exclude ions list for the full san on LC-IT-TOF/MS

Start m / z	End m / z	Start t_{R}	End t_{R}
334	334.5	12.7	12.8
427	427.5	7.7	7.8
497.3	497.5	9.79	9.82
503	503.4	8.3	8.4
503	503.5	8.3	8.4
599.2	599.32	12.6	12.75
683.4	683.5	12.9	13.02
713.4	713.5	11.3	11.4
717.4	717.5	10.45	10.52
723.4	723.5	11.3	11.4
783.4	783.5	12.8	12.9
815.4	815.5	12.4	12.5
845.4	845.5	12.2	12.3
861.2	861.5	8.9	9
863	863.5	9.1	9.2
977.5	977.6	12	12.2
991.5	991.5	12.9	13.1
107.5	12.8	12.9	

Table S4 The preferred ions list for the full san on LC-IT-TOF/MS

No.	m / z								
1	699.2	11	835.3	22	947.5	32	1025.5	42	1187.5
2	715.2	13	847.3	23	949.5	33	1059.5	43	1195.5
3	745.2	14	849.3	24	975.5	34	1109.2	44	1221.4
4	785.2	15	851.4	25	979.5	35	1123.5	45	1237.3
5	809.3	16	859.4	26	991.5	36	1137.5	46	1245.4
6	813.3	17	861.4	27	993.5	37	1139.5	47	1285.2
7	815.3	18	863.4	28	1005.5	38	1151.5	48	977.5
8	817.3	19	875.4	29	1007.5	39	1153.5	49	1315.4
9	829.3	20	879.4	30	1019.5	40	1167.5		
10	831.3	21	903.4	31	1026.5	41	1169.5		

Table S5 Detailed LC/MS data for characterization of the ginsenosides in NGTS

No.	t_{R} (min)	Identification	Parent ions	Product ions from IT/TOF-MS ${ }^{\text {n }}$ analysis	Product ions from MRM analysis	Ref
1	7.620	[PPT 16]-6-glucosyl-xylosyl	995.5423	$815.3825\left[\mathrm{M}+\mathrm{HCOO}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$	$\begin{aligned} & 949.3[\mathrm{M}-\mathrm{H}]^{-}, 769.2\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}, \\ & 655.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}]^{-} \end{aligned}$	1
		-20-glucoside or its isomer	[$\mathrm{M}+\mathrm{HCOO}]^{-}$			
2	7.680	Vinaginsenoside R_{22} or its isomer	$\begin{aligned} & 879.4974 \\ & {[\mathrm{M}+\mathrm{HCOO}]^{-}} \end{aligned}$	$833.4829[\mathrm{M}-\mathrm{H}]^{-}$,	$833.4[\mathrm{M}-\mathrm{H}]^{-}, 671.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	2
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	671.4276[M-H-glc] ${ }^{-}$,	653.3[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
				$653.4185\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$	$509.4[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,	
					$491.4\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-},$	
					$473.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-2 \mathrm{H}_{2} \mathrm{O}\right]^{-},$	
					$455.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-3 \mathrm{H}_{2} \mathrm{O}\right]^{-},$	
					$415.2\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-},$	
					$403.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{-},$	
					$391.4\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$	
3	7.803	[PPT 21]-6-glucosyl-xylosyl	1011.5334	$965.5203[\mathrm{M}-\mathrm{H}]^{-}$,	965.2[M-H] ${ }^{-}$, 921.2, 831.2,	2
		-20-glucoside or its isomer	$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$785.4657\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	803.2[M-H-glc] ${ }^{-}$, 785.3, 699.5,	
				$671.4221[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{xyl}]^{-}$,	671.3[M-H-glc-xyl] ${ }^{\text {, }}$	

$879.4921 \quad 833.4816[\mathrm{M}-\mathrm{H}]^{-}$,
$[\mathrm{M}+\mathrm{HCOO}]^{-} \quad 699.3728,671.4298[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
653.4214[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$509.3802[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$
1011.5357
$[\mathrm{M}+\mathrm{HCOO}]^{-} \quad 785.4626\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$671.4315[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{xyl}]^{-}$,
$653.4202\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-x y l-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$491.3678\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{xyl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{glc}\right]^{-}$
653.2[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}\right]^{-}$, 635.1[M-H-glc-2 $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}\right]^{-}$, 509.3 [M-H-glc-xyl-glc] ${ }^{-}$, $491.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$, $455.4\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-3 \mathrm{H}_{2} \mathrm{O}\right]^{-}$, $415.2\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\right.$
$\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,
$403.3\left[\mathrm{M}-\mathrm{H}-2 \text { glc- } \mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{-}$
$833.3[\mathrm{M}-\mathrm{H}]^{-}, 671.2[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
653.2[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$, $509.3[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,
$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$
$965.2[\mathrm{M}-\mathrm{H}]^{-}, 833.2[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}, \quad 2$
$785.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}, 699.5$,
$509.3\left[\right.$ M-H-glc-glc-xyl] ${ }^{-}$,
$491.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$455.4\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-3 \mathrm{H}_{2} \mathrm{O}\right]^{-}$, /[PPT 21]-6-rhamnosyl-20-glucosyl-glucoside
$1025.5493 \quad 979.5442[\mathrm{M}-\mathrm{H}]^{-}$
$[\mathrm{M}+\mathrm{HCOO}]^{-} \quad 845.4330\left[\mathrm{M}+\mathrm{COOH}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$, 799.4819[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$671.4352[\mathrm{M}-\mathrm{H}-\mathrm{rut}]^{-}$,
$509.3778[\text { M-H-rut-glc }]^{-}$
$653.4198\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$415.2\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\right.$
$\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,
$403.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{-}$
845.3[M+COOH-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
817.4[M-H-glc] ${ }^{-}$,
799.1[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$, 751.4,
671.4[M-H-glc-rha] ${ }^{-}$,
653.2[M-H-glc-H2O-rha] ${ }^{-}$,
$565.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\text { rha- } \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{-}$,
509.2[M-H-rha-2glc] ${ }^{-}$,
$455.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-3 \mathrm{H}_{2} \mathrm{O}\right]^{-}$,
415.3[M-H-glc- $\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}$-glc- $\mathrm{H}_{2} \mathrm{O}-$
$\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$
833.4[M-H] ${ }^{-}$
[PPD 11]-3-glucosyl-glucoside/
[PPT 12]-6,20-di-O-glucoside/ [PPT 13]-di- O-glucoside
[PPT 21]-6-rutinosyl-20-glucoside /[PPT 21]-6-rhamnosyl-20-glucosyl-glucoside
[PPD 11]-3-glucosyl-glucoside/ [PPT 12]-6,20-di-O-glucoside /[PPT 13]-di-O-glucoside
8.910 Dicaffeoyl-[PPD 10]

1025.5497	$817.4849[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$799.4739\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$

993.5226
$[\mathrm{M}+\mathrm{HCOO}]^{-}$

847.4654

$[\mathrm{M}+\mathrm{HCOO}]^{-}$
977.5329
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
979.3[M-H] ${ }^{-}, 817.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
654.9[M-H-2glc] ${ }^{-}$, $493.4[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$,
$417.3\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$
947.3[M-H] ${ }^{-}, 815.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
$785.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
$767.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
635.3[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}\right]^{-}$,
$473.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}-\mathrm{glc}\right]^{-}$
403.2 [M-H-glc- $\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}$-glc-
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}^{-}$, $391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}-\right.$
glc- $\left.\mathrm{C}_{6} \mathrm{H}_{10}\right]^{-}$
801.4[M-H] ${ }^{-}, 639.2$ [M-H-caffeoyl] $^{-}, \quad 7$
621.4[M-H-caffeoyl- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
477.2[M-H-2caffeoyl] ${ }^{-}$
931.3[M-H] ${ }^{-}, 799.5[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}, \quad 8-$
751.4[M-H- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{glc}\right]^{-}, \quad 11$
619.3[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{glc}\right]^{-}$,

Dicaffeoyl-[PPD 10]
[PPT 16]-3(6),20-di-O-glucoside /[PPD 12]-6(20)-glucosyl-glucoside
9.477 Sanshichisaponin G or its isomer
861.4854
$[\mathrm{M}+\mathrm{COOH}]^{-}$
863.5006
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
637.4332[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
493.3832[M-H-2glc] ${ }^{-}$,
$417.3364\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$
$801.4519[\mathrm{M}-\mathrm{H}]^{-}$,
639.4094[M-H-caffeoyl] ${ }^{-}$,
947.5178[M-H] ${ }^{-}$, 785.4687[M-H-glc] ${ }^{-}$
815.4679[M-H] ${ }^{-}, 653.4176[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
635.4078[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$553.3243\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$
847.4641
$[\mathrm{M}+\mathrm{HCOO}]$
993.5297
601.3[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
457.2[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}-2 \mathrm{glc}\right]^{-}$,
439.1[M-H-xyl-2 $\left.\mathrm{H}_{2} \mathrm{O}-2 \mathrm{glc}\right]^{-}$
635.3[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
553.2, 491.3[M-H-2glc] ${ }^{-}$,
473.2[M-H-2glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$403.4\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,
$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$
$817.3[\mathrm{M}-\mathrm{H}]^{-}, 655.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, \quad 1$ 637.4[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$, 493.4[M-H-2glc] ${ }^{-}$, $417.5\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$, $391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}\right]^{-}$
801.4[M-H] ${ }^{-}$, 639.2[M-H-caffeoyl] ${ }^{-}, \quad 7$
621.4, 477.2[M-H-2caffeoyl] ${ }^{-}$
947.3[M-H]-, $815.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,

			[$\mathrm{M}+\mathrm{HCOO}]^{-}$	$767.4469\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	785.2[M-H-glc] ${ }^{-}$,	
				653.4068[M-H-glc-xyl] ${ }^{-}$,	$653.2[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{xyl}]^{-}$,	
				635.4099[M-H-glc-xyl- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	635.2[M-H-glc-xyl- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
				$553.3236\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{xyl}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$	491.4[M-H-glc-xyl-glc] ${ }^{-}$,	
					415.3 [M-H-glc-xyl-glc- $\mathrm{H}_{2} \mathrm{O}$ -	
					$\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$	
19	9.520	Floaginsenoside B or its isomer		$815.4742[\mathrm{M}-\mathrm{H}]^{-}, 653.4222[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	$815.2[\mathrm{M}-\mathrm{H}]^{-}, 653.3$ [M-H-glc] ${ }^{-}$,	5
			[$\mathrm{M}+\mathrm{HCOO}]^{-}$	491.3786[M-H-2glc] ${ }^{-}$,	$635.2\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
				$391.2732\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$	$491.4[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,	
					$455.2\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-2 \mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
					$403.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}-\mathrm{glc}\right]^{-}$	
					$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$	
20	9.640	[PPT 16]-20-glucosyl-6-rutinoside	1009.5555	$963.5382[\mathrm{M}-\mathrm{H}]^{-}$	963.4[M-H] ${ }^{-}$, 817.3[M-H-rha] ${ }^{-}$,	1
		or its isomer	[$\mathrm{M}+\mathrm{HCOO}]^{-}$		801.2 [M-H-glc] ${ }^{\text {, }}$,	
					783.5[M-H-glc-H2O]-,	
					655.4[M-H-rha-glc] ${ }^{-}$, 619.1,	
					493.5 [M-H-rha-2glc] ${ }^{\text {- }}$,	

9.650 [PPT 16]-6-glucosyl-xylosyl
-20-glucoside or its isomer
9.757 Floaginsenoside B or its isomer

949.5365	$817.4864[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
$[\mathrm{M}-\mathrm{H}]^{-}$	$787.4757[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,

$769.4692\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$, $655.4338[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}]^{-}$,
637.4243[M-H-xyl-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$493.3843[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}]^{-}$
$685.3726[\mathrm{M}-\mathrm{H}]^{-}, 553.3348[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
861.4842
$[\mathrm{M}+\mathrm{HCOO}]^{-} \quad 635.3992\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$
475.3[M-H-rha-2glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
417.6 [M-H-rha-2glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$
949.3, 817.3[M-H-xyl] ${ }^{-}$,
$787.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
$769.4\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
655.3[M-H-xyl-glc] ${ }^{-}$,
493.3[M-H-xyl-2glc] ${ }^{-}$,
417.2[M-H-xyl-2glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,
$391.4\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}\right]^{-}$
$685.1[\mathrm{M}-\mathrm{H}]^{-}, 553.2[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
535.1[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
391.4[M-H-xyl-glc] ${ }^{-}$
$815.5[\mathrm{M}-\mathrm{H}]^{-}, 653.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, \quad 5,6$
635.2[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
491.4[M-H-2glc] ${ }^{-}$,
$403.2\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}\right]^{-}$
$391.4\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$
863.499
$[\mathrm{M}+\mathrm{HCOO}]^{-}$ [PPT 16]-6(20)-glucosyl-glucoside
9.885 Majoroside F_{6} or its isomer

9.857	[PPT 16]-3,20-di-O-glucoside/
	[PPT 16]-6,20-di-O-glucoside/
	[PPT 16]-6(20)-glucosyl-glucoside
9.885	Majoroside F_{6} or its isomer

10.011 [PPT 1]-O-rutinoside
10.020 [PPT 21]-20-xylosyl-3-glucoside or its isomer
10.037 [PPT 8]- O-xylosyl-di- O-glucoside
10.243 Ginsenoside Re_{8} or its isomer
745.4028
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
849.4866
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
991.5159
[$\mathrm{M}+\mathrm{HCOO}]^{-}$
961.5362
$[\mathrm{M}-\mathrm{H}]^{-}$
$699.3791[\mathrm{M}-\mathrm{H}]^{-}$
803.4652[M-H] ${ }^{-}, 671.4319[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
509.3842[M-H-xyl-glc] ${ }^{-}$,
$391.2835\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$
99.4693[M-H-glc] ${ }^{-}$,
$781.4640\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$635.4123\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{rha}\right]^{-}$
$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right]$
699.2[M-H] ${ }^{-}$, $553.2[\mathrm{M}-\mathrm{H}-\mathrm{rha}]^{-}$,
535.3, 391.4[M-H-rha-glc] ${ }^{-}$
$803.3[\mathrm{M}-\mathrm{H}]^{-}, 671.4[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}, \quad 3$
509.4[M-H-xyl-glc] ${ }^{-}$,
421.3[M-H-xyl-glc- $\left.\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{-}$,
$391.2\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl} \text {-glc- } \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$
$945.4[\mathrm{M}-\mathrm{H}]^{-}, 783.2[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, \quad 9$
$765.4\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
633.1[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}\right]^{-}$,
471.2[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}-\mathrm{glc}\right]^{-}$,
$453.1\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}-\mathrm{glc}\right]^{-}$,
$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right]^{-}$
961.4[M-H] ${ }^{-}, 799.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, 3$
653.3[M-H-glc-rha] ${ }^{-}$,
491.3[M-H-glc-rha-glc] ${ }^{-}$
415.3[M-H-glc-rha-glc- $\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$
10.362 [PPT 11]-6-glucosyl-glucoside/
[PPT 11]-3(6),20-di-O-glucoside
[PPT 14]-6,20-di-O-glucoside/
[PPD 10]-3-glucosyl-glucoside/
[PPT 12]-6,20-di-O-glucoside/
[PPT 13]-di- O-glucoside
[PPT 8]/[PPT 9]-O-xylosyl
-di- O-glucoside
10.372
861.4850
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
945.4997
$[\mathrm{M}-\mathrm{H}]^{-}$
963.5488
$[\mathrm{M}-\mathrm{H}]^{-}$
801.4933[M-H-glc]-, 783.4803,
655.4280[M-H-glc-rha] ${ }^{-}$, 637.4233,
$493.3828[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{rha}-\mathrm{glc}]^{-}$

815.4648[M-H] ${ }^{-}$, $653.4117[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
635.4017, 491.3714[M-H-glc-glc] ${ }^{-}$
945.2[M-H] ${ }^{-}, 813.2[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
783.2[M-H-glc] ${ }^{-}$,
765.4[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
633.4[M-H-glc- $\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}^{-}$,
$471.2\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{H}_{2} \mathrm{O}-2 \mathrm{glc}\right]^{-}$,
963.2[M-H] ${ }^{-}, 817.3\left[\right.$ M-H-rha] ${ }^{-}$,
$5\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]$
$417.6\left[\text { M-H-rha-2glc- } \mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$

Floralginsenoside C or its isomer

10.498 [PPT 8]-6,20-di- O-glucoside or its isomer
[PPT 21]-20-xylosyl-3-glucoside or its isomer
10.550 [PPT 19]-O-rhamnosyl-O-glucoside
801.465
[M-H]
859.4668 $[\mathrm{M}+\mathrm{HCOO}]^{-}$
849.4835
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
861.4829
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
$671.4215[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
$509.3738[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}]^{-}$,
$391.2854\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$
685.3804[M-H-C6 $\left.\mathrm{H}_{12} \mathrm{O}_{2}\right]^{-}$,
$669.4280[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
593.3551[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,
$553.3236\left[\mathrm{M}-\mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \text {-xyl] }\right]^{-}$,
$391.2732\left[\mathrm{M}-\mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right.$-xyl-glc] ${ }^{-}$
$813.4548[\mathrm{M}-\mathrm{H}]^{-}$
815.4786[M-H] ${ }^{-}, 669.4122[M-H-r h a]^{-}$,
653.4177[M-H-glc] ${ }^{-}$,
611.3656[M-H-rha- $\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,
$801.2[\mathrm{M}-\mathrm{H}]^{-}, 685.2\left[\mathrm{M}-\mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right]^{-}$
669.5[M-H-xyl] ${ }^{-}$,
593.3[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,
575.4, 507.3[M-H-xyl-glc] ${ }^{-}$,
813.2[M-H] ${ }^{-}, 651.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
633.4[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
489.5[M-H-2glc] ${ }^{-}$,
471.4[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{glc}\right]^{-}$
$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right]^{-}$
$803.3[\mathrm{M}-\mathrm{H}]^{-}, 671.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}, \quad 2$
653.3[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
509.4[M-H-xyl-glc] ${ }^{-}$,
$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$
815.3[M-H] ${ }^{-}$, 669.2[M-H-rha] ${ }^{-}$,
653.5, 611.5, 507.3[M-H-rha-glc] ${ }^{-}$,
431.3[M-H-rha-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,

				$593.3551\left[\mathrm{M}-\mathrm{H}-\mathrm{rha}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$	$391.2\left[\mathrm{M}-\mathrm{H}-\mathrm{rha}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right]^{-}$	
				507.3638 [M-H-rha-glc] ${ }^{-}$,		
				$449.3122\left[\mathrm{M}-\mathrm{H}-\mathrm{rha-glc}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$		
38^{Ψ}	10.592	Floralginsenoside I or	1023.5367		977.3[M-H] ${ }^{-}$, 959.3,	15,
		floralginsenoside J	$[\mathrm{M}+\mathrm{HCOO}]^{-}$		815.4[M-H-glc] ${ }^{-}$,	16
					797.3[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}, 779.2$,	
					$651.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{rha}\right]^{-},$	
					$619.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{rha}-\mathrm{O}_{2}\right]^{-},$	
					$457.2\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{rha}-\mathrm{O}_{2}\right.$-glc] ${ }^{-}$	
39	10.650	[PPT 21]-20-xylosyl-3-glucoside or	849.4822	803.4705[M-H] ${ }^{-}$, $671.4285[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	803.2[M-H] ${ }^{-}$, $671.4[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	2
		its isomer	$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$509.3805\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}\right.$-glc] ${ }^{-}$	509.3[M-H-xyl-glc] ${ }^{-}$,	
					$421.2\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{-},$	
					$391.4\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl} \text {-glc- } \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$	
40	10.725	Ginsenoside Re_{8} or its isomer	1007.5373		961.2[M-H] ${ }^{-}$, 799.2[M-H-glc] ${ }^{-}$,	3
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$		$781.2\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
					$723.2\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$	
					$653.3\left[\mathrm{M}-\mathrm{H}\right.$-glc-rha] ${ }^{-}$,	

$[\mathrm{M}+\mathrm{HCOO}]^{-}$
$801.4633 \quad 669.4168[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
$[\mathrm{M}-\mathrm{H}]^{-} \quad 593.3551\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$
$859.4673 \quad 813.4409[\mathrm{M}-\mathrm{H}]^{-}$
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
849.4837
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
509.3607[M-H-xyl-glc] ${ }^{-}$,
$415.3109\left[\mathrm{M}-\mathrm{H}-x y l-\mathrm{glc}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,
391.2732 [M-H-xyl-glc-C $\left.\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$
$477.3828[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{rha}]^{-}$
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
863.4995
[PPD 10]-O-glucosyl-O-rutinoside
11.205 Quinquenoside L_{9} or its isomer

isomer

11.088
[PPT 21]-20-xylosyl-3-glucoside or its isomer
10.840 [PPD 12]/[PPT 16]-O-rhamnosyl
-O-glucosyl- O-glucuronide
10.860

Floralginsenoside C or its isomer
10.905 [PPT 8]-6,20-di-O-glucoside or its
977.5193[M-H] ${ }^{-}$
491.4[M-H-glc-rha-glc] ${ }^{-}$
1023.2, 976.9
493.3 [M-H-glc-glcA-rha] ${ }^{-}$
813.5[M-H] ${ }^{-}$, $651.2[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, \quad 9$
633.1[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$489.5[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,
$471.1\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{glc}\right]^{-}$
$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right]^{-}$
$803.4[\mathrm{M}-\mathrm{H}]^{-}, 671.4[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}, \quad 2$
653.3[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
509.4[M-H-xyl-glc] ${ }^{-}$, 493.3, 403.4,
$391.3\left[\mathrm{M}-\mathrm{H}-x y l-\text { glc }-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$,
947.5, 461.4,

7
817.3[M-H]-, $671.3[\mathrm{M}-\mathrm{H}-\mathrm{rha}]^{-}$,

			[M+HCOO] ${ }^{-}$	509.3797[M-H-rha-glc] ${ }^{-}$,	653.0[M-H-rha- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
				$391.2732\left[\mathrm{M}-\mathrm{H}-\mathrm{rha-glc}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$	509.3 [M-H-rha-glc] ${ }^{-}$	
47	11.260	Notoginsenoside SP_{8} or its isomer	669.4230	$593.3630\left[\mathrm{M}-\mathrm{H}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{-}$,		13
			[M-H] ${ }^{-}$	$507.3661[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$		
				$449.3214\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$		
48	11.367	[PPT 9]-3-rutinosyl-20-glucoside or	1005.5278		959.3[M-H] ${ }^{-}$, $797.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	13
		its isomer	[$\mathrm{M}+\mathrm{HCOO}]^{-}$		$779.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
					$697\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{-},$	
					489.2[M-H-glc-rutinosyl] ${ }^{-}$,	
					$471.2\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{rutinosyl}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$	
49	11.474	Quinquenoside L_{9} or its isomer	863.5003	817.4850[M-H] ${ }^{-}$, $671.4441[\mathrm{M}-\mathrm{H}-\mathrm{rha}]^{-}$,	817.3[M-H] ${ }^{-}$, $671.3[\mathrm{M}-\mathrm{H}-\mathrm{rha}]^{-}$,	2
			[$\mathrm{M}+\mathrm{HCOO}]^{-}$	$653.4210\left[\mathrm{M}-\mathrm{H}-\mathrm{rha}-\mathrm{H}_{2} \mathrm{O}\right]^{-},$	$\text { 509.3[M-H-rha-glc] }{ }^{-} \text {, }$	
				509.3717[M-H-rha-glc] ${ }^{-}$,	391.3 [M-H-rha-glc- $\left.\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$	
				$391.2862\left[\text { M-H-rha-glc- } \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$		
50	11.717	[PPT 8]-6,20-di-O-glucoside	859.4673	$813.4409[\mathrm{M}-\mathrm{H}]^{-}$	813.5[M-H] ${ }^{-}$, $651.2[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	9
		or its isomer	[M+HCOO] ${ }^{-}$		$633.1\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
					$489.5[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,	

					471.1[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{glc}\right]^{-}$	
					$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right]^{-}$	
51	11.752	Floaginsenoside B or its isomer	861.4808	815.4745[M-H] ${ }^{-}$, $653.4192[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	815.4[M-H] ${ }^{-}$, 653.3[M-H-glc] ${ }^{-}$,	5, 6
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$635.4099\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$	491.5[M-H-2glc] ${ }^{-}$,	
					421.2[M-H-2glc- $\left.\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,	
					$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$	
52^{Ψ}	11.457	[PPD 10]-O-glucosyl- O-xyloside	817.4975		771.2[M-H] ${ }^{-}$, 687.4, 655.4,	7
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$		639.2[M-H-xyl] ${ }^{-}$,	
					477.2[M-H-xyl-glc] ${ }^{-}$,	
					459.6[M-H-xyl-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$	
53	11.780	Notoginsenoside N or its isomer	1007.5402	961.5400[M-H] ${ }^{-}$, $799.4730[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	961.1[M-H] ${ }^{-}$, 799.4[M-H-glc] ${ }^{-}$,	3
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	637.4204[M-H-2glc] ${ }^{-}$,	637.3[M-H-2glc] ${ }^{-}$,	
				619.4015[M-H-2glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	553.3[M-H-2glc-C6 $\left.\mathrm{H}_{12}\right]^{-}$,	
				475.3722[M-H-3glc] ${ }^{-}$	475.3[M-H-3glc] ${ }^{-}$,	
					$391.2\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
54	11.84	Ginsenoside B_{2} or	945.5423	799.4808[M-H-rha] ${ }^{-}$,	945.4, 799.3[M-H-rha] ${ }^{-}$,	3
	8	chikusetsusaponin FK_{1}	[M-H] ${ }^{-}$	$783.4762[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	783.5[M-H-glc] ${ }^{-}$,	

11.860
[PPT 21]-20-xylosyl-3-glucoside or its isomer
11.908 Notoginsenoside A or its isomer
803.4769
$[\mathrm{M}-\mathrm{H}]^{-}$
1005.5302
$[\mathrm{M}+\mathrm{HCOO}]^{-} \quad 779.4519\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$
$1123.5916 \quad 961.5320[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
[M-H]
637.4233[M-H-3glc] ${ }^{-}$,
475.3734[M-H-4glc] ${ }^{-}$
637.4[M-H-rha-glc] ${ }^{-}$, 619.6,
475.3[M-H-rha-2glc] ${ }^{-}$,
$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{rha}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$
849.4, 803.4
$779.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
633.2[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{rha}\right]^{-}$,
$471.2\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{rha}-\mathrm{glc}\right]^{-}$
$961.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, 799.3[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}, \quad 3$
637.3[M-H-3glc] ${ }^{-}$,
475.1[M-H-4glc] ${ }^{-}$,
$391.2\left[\mathrm{M}-\mathrm{H}-4 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$

58^{Ψ}	11.933	[PPD 12]/[PPT 16]-O-glucosyl-O-	833.4912		83	1,
		xyloside	$[\mathrm{M}+\mathrm{HCOO}]^{-}$		$655.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	14
					637.3[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
					493.4[M-H-xyl-glc] ${ }^{-}$,	
					417.4[M-H-xyl-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,	
					$391.4\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}\right]^{-}$	
59	11.965	Quinquenoside L_{9} or its isomer	863.5000	817.4907[M-H] ${ }^{-}$, $671.4363[\mathrm{M}-\mathrm{H}-\mathrm{rha}]^{-}$,	817.4, 763.2, 697.4, 659.3,	2
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	509.3732[M-H-rha-glc] ${ }^{-}$	655.2[M-H-glc] ${ }^{-}$, 637.2, 535.3,	
				$391.2809\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$	509.3[M-H-rha-glc] ${ }^{-}$, 493.3, 417.3,	
					$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}\right]^{-}$	
60	11.968	[PPD 8]-3-glucosyl-glucosyl	1093.5794	$961.5315[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	961.3[M-H-xyl] ${ }^{-}$, $931.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	9,
		-20-glucosyl-arabinoside/	[M-H] ${ }^{-}$	931.5268[M-H-glc] ${ }^{-}$,	799.3 [M-H-xyl-glc] ${ }^{-}$,	10
		[PPD 9]-3-glucosyl-glucosyl		$799.4792\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}\right.$-glc] ${ }^{-}$,	$637.3[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,	
		-20-glucosyl-xyloside		$769.4573[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{glc}]^{-}$,	475.3[M-H-xyl-3glc] ${ }^{-}$	
				637.4259[M-H-xyl-2glc] ${ }^{-}$,		
				619.4055[M-H-xyl-2glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,		
				475.3742[M-H-xyl-3glc] ${ }^{-}$, 323.2758		

1107.5947

$[\mathrm{M}-\mathrm{H}]^{-}$
975.5163 $[\mathrm{M}+\mathrm{HCOO}]^{-}$
$1141.6044 \quad 979.5341[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$
[M-H] ${ }^{-}$
817.4847[M-H-2glc] ${ }^{-}$,
799.4747[M-H-2glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
655.4341[M-H-3glc] ${ }^{-}$,
$961.3[\mathrm{M}-\mathrm{H}-\mathrm{rha}]^{-}, 945.5[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
783.2[M-H-rha-glc] ${ }^{-}$,
637.3[M-H-rha-2glc] ${ }^{-}$,
475.4[M-H-rha-3glc] ${ }^{-}$
929.4[M-H] ${ }^{-}$, $767.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
$749.4\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$617.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}\right]^{-}$,
473.2[M-H-2glc-xyl] ${ }^{-}$,
$455.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{xyl}-\mathrm{glc}\right]^{-}$
$389.4\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{xyl}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$
979.3[M-H-glc] ${ }^{-}, 817.4[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}, \quad 1$,
$799.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
14
$12.160 \quad$ [PPT 6]-6-glucosyl-xylosyl
-20-glucosyl-glucoside/
[PPT 6]-3-glucosyl-glucosyl
-20-glucosyl-arabinoside
(xyloside)
12.190 [PPT 4]-6,20-di-O-glucoside/
[PPT 5]-3,20-di-O-glucoside
12.208 Notoginsenoside R_{1}
1093.5814
[M-H]
843.4725
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
931.5277
$\left[\begin{array}{l}\text { M-H]- }\end{array}\right.$
$637.4233\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
589.3315, 493.3827[M-H-4glc] ${ }^{-}$

$961.5329\left[\right.$ M-H-xyl] ${ }^{-}$,

$799.4745[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}]^{-}$,
637.4200[M-H-xyl-2glc] ${ }^{-}$,
$619.4195\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
475.3749[M-H-xyl-3glc] ${ }^{-}$,
$391.2758\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$,
$799.4793[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
$781.4763\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$769.4742[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
$751.4750\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
637.4264[M-H-xyl-glc] ${ }^{-}$,
619.4164[M-H-xyl-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
961.3[M-H-xyl] ${ }^{-}$,
799.3 [M-H-xyl-glc] ${ }^{-}$,
$781.2\left[\mathrm{M}-\mathrm{H}-x y l-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
637.3[M-H-xyl-2glc] ${ }^{-}$,
475.4[M-H-xyl-3glc] ${ }^{-}$
$391.2\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$
$797.4[\mathrm{M}-\mathrm{H}]^{-}, 635.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, \quad 17$,
473.2[M-H-2glc] ${ }^{-}, 457.3,437.2, \quad 18$
419.3, 389.5[M-H-2glc-C $\left.\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$
931.3, 799.3[M-H-xyl] ${ }^{-}$,
769.3 [M-H-glc] ${ }^{-}$,
637.3[M-H-xyl-glc] ${ }^{-}$,
475.4[M-H-xyl-2glc] ${ }^{-}$,
457.3[M-H-xyl-2glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$

				475.3739[M-H-xyl-2glc] ${ }^{-}$,		
				$391.2845\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$		
67*	12.229	Ginsenoside Re	945.5420	799.4725[M-H-rha] ${ }^{-}$,	945.4[M-H] ${ }^{-}$, 799.3[M-H-rha] ${ }^{-}$,	
			[M-H] ${ }^{-}$	$783.4801[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	$783.5[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	
				637.4225[M-H-rha-glc] ${ }^{-}$,	637.4[M-H-rha-glc] ${ }^{-}$,	
				619.4121[M-H-rha-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	619.4[M-H-rha-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
				$475.3735[\mathrm{M}-\mathrm{H}-\mathrm{rha}-2 \mathrm{glc}]^{-}$	475.3[M-H-rha-2glc] ${ }^{-}$	
					$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{rha-2} 2 \mathrm{clc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
68	12.240	Vinaginsenoside R_{11} or	831.4705		$785.4[\mathrm{M}-\mathrm{H}]^{-}, 653.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	3
		floraginsenoside D	$[\mathrm{M}+\mathrm{HCOO}]^{-}$		$491.5\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}\right.$-glc] ${ }^{-}$	
					$415.3\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$	
					$391.2\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$	
69*	12.350	Ginsenoside Rg_{1}	845.4898	$799.4813[\mathrm{M}-\mathrm{H}]^{-}, 637.4305[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$	$799.6[\mathrm{M}-\mathrm{H}]^{-}, 637.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$		619.3[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}, 475.6,391.3$	
70	12.403	Notoginsenoside R_{2} or its isomer	815.4810	$769.4673[\mathrm{M}-\mathrm{H}]^{-}, 637.4166[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	$769.4[\mathrm{M}-\mathrm{H}]^{-}, 637.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	619.4195[M-H-xyl- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	475.4[M-H-xyl-glc] ${ }^{-}$	
				607.4127[M-H-glc] ${ }^{-}$,	$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	

12.432 Notoginsenoside N or its isomer
12.448 Notoginsenoside G or its isomer
12.502 Vinaginsenoside R_{11} or floraginsenoside D
12.51 Notoginsenoside R_{2} or its isomer
1007.5427
$\mathrm{M}^{\mathrm{M}+\mathrm{HCOO}]^{-} \quad 781.4651\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-},}$
637.4306[M-H-2glc] ${ }^{-}$,
619.4055[M-H-2glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
475.3734[M-H-3glc] ${ }^{-}$
797.4637[M-H-glc] ${ }^{-}$,
779.4247[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$635.4099[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,
$473.3573[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$
$653.4210[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$
$[\mathrm{M}-\mathrm{H}]^{-}$
815.4773
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
475.3664[M-H-xyl-glc] ${ }^{-}$
$961.5332[\mathrm{M}-\mathrm{H}]^{-}, 799.4753[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, \quad 961.3[\mathrm{M}-\mathrm{H}]^{-}, 799.2[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
$781.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
$637.4[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}, 475.2[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$
$391.3\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$,
375.2, 349.3
$797.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, 779.3$,
635.2[M-H-2glc] ${ }^{-}$, 617.3,
473.2[M-H-3glc] ${ }^{-}$, 455.4,
$389.1\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$
$785.2[\mathrm{M}-\mathrm{H}]^{-}, 653.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}, \quad 17$
491.5 [M-H-xyl-glc] ${ }^{-}$,
415.3 [M-H-xyl-glc- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$,
$391.8\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]^{-}$
$769.3[\mathrm{M}-\mathrm{H}]^{-}, 607.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
475.3[M-H-glc-xyl] ${ }^{-}$
391.3[M-H-glc-xyl- $\left.\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$

12.528	[PPD 8]-tri-O-glucoside/	961.5359	799.4715[M-H-glc] ${ }^{-}$,	1007.3, 961.3[M-H] ${ }^{-}$,	3
	[PPD 9]-3-glucosyl-	[M-H] ${ }^{-}$	$781.4640\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	799.3[M-H-glc] ${ }^{-}$, $637.2[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,	
	glucosyl-20-glucoside		637.4356[M-H-2glc] ${ }^{-}$	475.4[M-H-3glc] ${ }^{-}$,	
				$387.1\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}\right]^{-}$	
12.547	[PPT 6]-6-acetylglucosyl	887.4997	841.4835[M-H] ${ }^{-}$, $799.4820[\mathrm{M}-\mathrm{H}-\mathrm{Ac}]^{-}$,	841.3[M-H] ${ }^{-}$, 799.4[M-H-Ac] ${ }^{-}$,	8-
	-20-glucoside/[PPT 6]-6-	$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$781.4597\left[\mathrm{M}-\mathrm{H}-{\left.\mathrm{Ac}-\mathrm{H}_{2} \mathrm{O}\right]^{-} \text {, }}^{\text {, }}\right.$	$781.4\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	10
	glucosyl-20-acetylglucoside		637.4254[M-H-Ac-glc] ${ }^{-}$,	637.3[M-H-Ac-glc] ${ }^{-}$,	
	/[PPT 6]-20-acetyl-6-		$619.4195\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$	619.3[M-H-Ac- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{glc}\right]^{-}$,	
	glucosyl-glucoside		475.3734[M-H-Ac-2glc] ${ }^{-}$	475.4[M-H-Ac-2glc] ${ }^{-}$,	
				$457.4\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-},$	
				$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
12.548	Gynosaponin V or its isomer	1091.6028	929.5376[M-H-glc] ${ }^{-}$,	1091.3[M-H] ${ }^{-}$, $929.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	3
		[M-H] ${ }^{-}$	$767.4769[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,	$767.2[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}, 605.4[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$	
			$605.4359[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$		
12.583	[PPT 12]-6(12, 20)-O-glucoside	699.4329		653.3[M-H] ${ }^{-}$,	19
		$[\mathrm{M}+\mathrm{HCOO}]^{-}$		$577.3\left[\mathrm{M}-\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{-}$	
				491.3[M-H-glc] ${ }^{-}$, 455.2, 429.2,	

12.588 Isomer of notoginsenoside R_{1}
12.607 [PPD 7]-3-glucosyl-glucosyl
-20-glucosyl-glucosyl-
arabinoside (xyloside)/[PPD 7]
-3-glucosyl-glucosyl-glucosyl
-20-glucosyl-xyloside
12.630 [PPD 7]-3-glucosyl-glucosyl
-20-glucosyl-glucosyl-
arabinoside (xyloside)/[PPD 7]
-3-glucosyl-glucosyl-glucosyl
-20-glucosyl-xyloside
977.5308
$[\mathrm{M}+\mathrm{HCOO}]^{-}$
1239.6369
$[\mathrm{M}-\mathrm{H}]^{-}$
1239.6396
[M-H] ${ }^{-}$
931.5245[M-H] ${ }^{-}$, $799.4809[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
637.4245[M-H-xyl-glc] ${ }^{-}$,
475.3741[M-H-xyl-2glc] ${ }^{-}$
$1107.5868[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
945.5333[M-H-xyl-glc] ${ }^{\text {- }}$,
$783.4821[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}]^{-}$,
621.4351[M-H-xyl-3glc] ${ }^{-}$,
$459.3828[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-4 \mathrm{glc}]^{-}$
$1107.5919[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
945.5337[M-H-xyl-glc] ${ }^{-}$,
$783.4840[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}]^{-}$,
621.4289[M-H-xyl-3glc] ${ }^{-}$,
459.3749[M-H-xyl-4glc] ${ }^{-}$
389.2, 343.2
931.4[M-H] ${ }^{-}$, $799.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
637.3[M-H-xyl-glc] ${ }^{-}$,
475.3[M-H-xyl-2glc] ${ }^{-}$,
$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}, 353.2$
$1239.2[\mathrm{M}-\mathrm{H}]^{-}, 1107.4[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}, \quad 3$
1077.4[M-H-glc] ${ }^{-}$,
945.5[M-H-xyl-glc] ${ }^{-}$,
$783.5[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}]^{-}$,
621.6[M-H-xyl-3glc] ${ }^{-}$,
459.3[M-H-xyl-4glc] ${ }^{-}$
$1239.2[\mathrm{M}-\mathrm{H}]^{-}, 1107.4[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}, \quad 19$
1077.4[M-H-glc] ${ }^{-}$,
945.5[M-H-xyl-glc] ${ }^{-}$,
$783.5[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}]^{-}$,
621.6[M-H-xyl-3glc] ${ }^{-}$,
458.9 [M-H-xyl-4glc] ${ }^{-}$

12.652	$[$ PPT 4]-6,20-di- O-glucoside or its	843.4703
	isomer	$[\mathrm{M}+\mathrm{HCOO}]^{-}$

12.668	[PPD 3]-3-glucosyl-glucosyl	1105.5802	$943.5105[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
	-20-glucosyl-glucoside or	$[\mathrm{M}-\mathrm{H}]^{-}$	$781.4640[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,
	epoxynotoginsenoside A		$619.4055[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$,
	or its isomer		$457.3616[\mathrm{M}-\mathrm{H}-4 \mathrm{glc}]^{-}$
12.683	[PPT 6]-6-acetylglucosyl	887.5021	$781.4734\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}^{2}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
	-20-glucoside/[PPT 6]-6-		$619.4176\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}^{2}-\mathrm{glc}^{2}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$
	glucosyl-20-acetylglucoside		
	/[PPT 6]-20-acetyl-6-		
glucosyl-glucoside			

1105.5802	$943.5105[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
$[\mathrm{M}-\mathrm{H}]^{-}$	$781.4640[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,
	$619.4055[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$,
887.5021	$457.3616[\mathrm{M}-\mathrm{H}-4 \mathrm{glc}]^{-}$
	$781.4734\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
	$619.4176\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}-\mathrm{glc}^{-} \mathrm{H}_{2} \mathrm{O}\right]^{-}$

783.4897
$[\mathrm{M}-\mathrm{H}]^{-}$
637.4259[M-H-rha] ${ }^{-}$,
475.3756[M-H-rha-glc] ${ }^{-}$,
$797.3[\mathrm{M}-\mathrm{H}]^{-}, 635.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
617.3[M-H-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
607.2[M-H-glc-CO] ${ }^{-}$,
473.2[M-H-2glc] ${ }^{-}$
$1105.3[\mathrm{M}-\mathrm{H}]^{-}, 943.5[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, \quad 17$,
$781.2[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,
619.4[M-H-3glc $]^{-}, 543.2$,
457.2[M-H-4glc] ${ }^{-}$,
887.4, $841.3[\mathrm{M}-\mathrm{H}]^{-}$,
$799.4[\mathrm{M}-\mathrm{H}-\mathrm{Ac}]^{-}$
$781.4\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,
679.2[M-H-glc] ${ }^{-}$
637.3[M-H-Ac-glc] ${ }^{-}$, 619.3,
475.4[M-H-Ac-2glc] ${ }^{-}$, 457.4,
$391.2\left[\mathrm{M}-\mathrm{H}-\mathrm{Ac}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$
$783.4[\mathrm{M}-\mathrm{H}]^{-}, 637.3[\mathrm{M}-\mathrm{H}-\mathrm{rha}]^{-}, \quad 3$
$619.3\left[\text { M-H-rha- } \mathrm{H}_{2} \mathrm{O}\right]^{-}$,

			[$\mathrm{M}+\mathrm{HCOO}]^{-}$	475.3756[M-H-rha-glc] ${ }^{-}$,	619.2[M-H-rha- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
				$391.2790\left[\text { M-H-rha-glc-C66 } \mathrm{H}_{12}\right]^{-}$	475.4[M-H-rha-glc] ${ }^{\text {- }}$,	
					457.3 [M-H-rha-glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$	
90*	12.848	Ginsenoside Rc	1077.5804	945.5398[M-H-ara] ${ }^{-}$,	1077.4[M-H] ${ }^{-}$, 945.4[M-H-ara] ${ }^{-}$,	
			[M-H] ${ }^{-}$	783.4787[M-H-ara-glc] ${ }^{-}$,	783.4 [M-H-ara-glc] ${ }^{-}$,	
				$459.3828[\mathrm{M}-\mathrm{H}-\mathrm{ara}-3 \mathrm{glc}]^{-}$	621.4[M-H-ara-2glc] ${ }^{\text {- }}$,	
					459.2[M-H-ara-3glc] ${ }^{-}$	
91	12.860	Notoginsenoside R_{2} or its isomer	769.4733	637.4272[M-H-xyl] ${ }^{-}$,	475.3[M-H-xyl-glc] ${ }^{-}$	
			[M-H] ${ }^{-}$	475.3741[M-H-xyl-glc] ${ }^{-}$,		
				$391.2732\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$		
92	12.932	[PPT 6]-3(6,20)-glucosyl-rhamnoside	783.4910	637.4235[M-H-rha] ${ }^{-}$,	$783.4[\mathrm{M}-\mathrm{H}]^{-}, 637.4[\mathrm{M}-\mathrm{H}-\mathrm{rha}]^{-}$,	3
		/[PPT 6]-6-rhamnosyl (glucosyl)	[M-H] ${ }^{-}$	619.4128[M-H-rha- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	619.4[M-H-rha- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	
		-20-glucoside (rhamnoside)		$475.3725[\mathrm{M}-\mathrm{H}-\mathrm{rha-glc}]^{-}$,	475.3[M-H-rha-glc] ${ }^{-}$, 459.5,	
				$457.3709\left[\mathrm{M}-\mathrm{H}-\mathrm{rha}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	391.3 [M-H-rha-glc- $\left.\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
				$391.2826\left[\text { M-H-rha-glc- } \mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$		
93	12.850	Vinaginsenoside R_{3} or its isomer	929.5481	$767.4878[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	929.4[M-H] ${ }^{-}$, $767.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	3
			[M-H] ${ }^{-}$	$605.4380[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$	$605.3[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}, 443.1[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$	

94*	13.007	Ginsenoside Rh_{1}			$339.3\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$	
			683.4348	637.4256[M-H] ${ }^{-}$, $475.3766[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	637.8, 553.3, 475.9[M-H-glc] ${ }^{-}$,	18
			[$\mathrm{M}+\mathrm{HCOO}]^{-}$	$391.2832\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	$391.3\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
95*	13.008	Ginsenoside Rd	991.5484	945.5431[M-H] ${ }^{-}$, $783.4825[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	$945.5[\mathrm{M}-\mathrm{H}]^{-}, 783.6[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	
			[$\mathrm{M}+\mathrm{HCOO}]^{-}$	621.4278[M-H-2glc] ${ }^{-}$,	621.6[M-H-2glc] ${ }^{-}, 459.6[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$	
				603.4161[M-H-2glc- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	$375.5\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
				$459.3798[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$,		
				$375.2827\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$		
96	13.068	Isomer of ginsenoside Rd	991.5479	945.5434[M-H] ${ }^{-}$	945.4[M-H] ${ }^{-}$, $783.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$783.4860[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	621.4[M-H-2glc] ${ }^{-}$, 537.2,	
				$765.4786\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	459.4[M-H-3glc] ${ }^{-}$	
				$621.4323[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,	$375.5\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
				$603.4020\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$,		
				$459.3805[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}]^{-}$,		
				375.2877[M-H-3glc-C6 $\left.\mathrm{H}_{12}\right]^{-}$		
97	13.108	[PPT 6]-6,20-di-O-xyloside or its	739.4637	607.4225[M-H-xyl] ${ }^{-}$,	$739.3[\mathrm{M}-\mathrm{H}]^{-}, 607.2[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	19
		isomer	[M-H] ${ }^{-}$	$475.3710[\mathrm{M}-\mathrm{H}-2 \mathrm{xyl}]^{-}$	475.3[M-H-2xyl] ${ }^{-}$, 459.4,	

					$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{xyl}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$
98*	13.148	Ginsenoside F_{1}		637.4259[M-H] ${ }^{-}$, $475.3730[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$	3
			[M+HCOO] ${ }^{-}$		
99^{Ψ}	13.208	[PPD 7]-O-xylosyl-di-O-glucoside	961.5365	915.5333[M-H] ${ }^{-}$, $783.4910[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	915.2[M-H] ${ }^{-}$, $783.5[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,
			[$\mathrm{M}+\mathrm{HCOO}]^{-}$	621.4268[M-H-glc-xyl] ${ }^{\text {- }}$,	$753.2[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,
				603.4054[M-H-glc-xyl- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$,	$621.1[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{xyl}]^{-}$,
				$459.3771[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{xyl}]^{-}$	$537.4\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{xyl}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$,
					459.4[M-H-glc-xyl-glc] ${ }^{-}$
					$375.5\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{xyl}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$
100	13.218	[PPD 2]-O-xylosyl-O-glucoside	795.4539		749.4[M-H] ${ }^{-}$, 633.1, 19
Ψ			[M+HCOO] ${ }^{-}$		617.3[M-H-xyl] ${ }^{-}$,
					455.3[M-H-xyl-glc] ${ }^{-}$
101	13.228	Isomer of ginsenoside Rg_{1}	845.4913	683.4339[M+HCOO-glc] ${ }^{-}$,	$799.3[\mathrm{M}-\mathrm{H}]^{-}, 637.3[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}, \quad 19$
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$637.4233[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	475.4[M-H-2glc] ${ }^{-}$,
				475.3744[M-H-glc] ${ }^{-}$	$391.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$
102	13.237	Ginsenoside Rg_{9} or its isomer	827.4773	$781.4606[\mathrm{M}-\mathrm{H}]^{-}$	781.3[M-H] ${ }^{-}$, 745.1, 3
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$		619.4[M-H-glc] ${ }^{-}$, $457.3[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,

					407.4, 399.3,	
103	13.301	[PPD 7]-3-glucosyl-20-rutinoside	975.5553	783.4816[M-H-rha] ${ }^{-}$,	929.3[M-H] ${ }^{-}$, 783.4[M-H-rha] ${ }^{-}$,	19
		/[PPD 7]-3-glucosyl-glucosyl	[$\mathrm{M}+\mathrm{HCOO}]^{-}$	$621.4333[\mathrm{M}-\mathrm{H}-\mathrm{rha-glc}]^{-}$,	621.5[M-H-rha-glc] ${ }^{-}$,	
		-20-rhamnoside		$459.3828[\mathrm{M}-\mathrm{H}-\mathrm{rha}-2 \mathrm{glc}]^{-}$	$537.1\left[\mathrm{M}-\mathrm{H}-\mathrm{rha}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$,	
					459.4[M-H-rha-2glc] ${ }^{-}$,	
					$375.3\left[\mathrm{M}-\mathrm{H}-\mathrm{rha}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
104 ${ }^{\text {\# }}$	13.308	[PPD 3]/[PPD 4]/[PPT 2]/[PPT 3]-	1111.6967	781.4710 [M-H-deca-non-ace] ${ }^{-}$,		19
Ψ		decadianoyl-nonenoyl-acetyl-di	[M-H] ${ }^{-}$	619.4152 [M-H-deca-non-ace-glc] ${ }^{-}$		
		-O-glucoside				
105	13.326	[PPD 4]- O-xylosyl- O-glucoside	797.4685	$751.4620[\mathrm{M}-\mathrm{H}]^{-}$,	$751.3[\mathrm{M}-\mathrm{H}]^{-}, 619.3[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	17,
Ψ			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	619.4135[M-H-xyl] ${ }^{-}$,	601.3, 457.4[M-H-xyl-glc] ${ }^{-}$	19,
				$601.4084\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$	423.5, $387.1\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl} \text {-glc- } \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}\right]^{-}$	20
106	13.348	Chikusetsusaponin LT_{8} or its isomer	763.4633	$617.3966\left[\right.$ M-H-rha] ${ }^{-}$	$763.2[\mathrm{M}-\mathrm{H}]^{-}, 617.3[\mathrm{M}-\mathrm{H}-\mathrm{rha}]^{-}$,	20
			[M-H] ${ }^{-}$		503.3, 455.6[M-H-rha-glc] ${ }^{-}$	
107	13.378	Ginsenoside Rg_{9} or its isomer	827.4763	$781.4606[\mathrm{M}-\mathrm{H}]^{-}, 619.4127[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$	$781.3[\mathrm{M}-\mathrm{H}]^{-}, 745.1$,	19
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$		619.4[M-H-glc] ${ }^{-}$, $457.3[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$	
					$373.3\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	

108	13.388	Isomer of ginsenoside Rd	991.5460	$945.5365[\mathrm{M}-\mathrm{H}]^{-}, 783.4795[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	945.4[M-H] ${ }^{-}$, $783.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	20
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$621.4283[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,	$621.4[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$,	
				459.3828[M-H-3glc] ${ }^{-}$	$537.2\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$,	
				$375.2877\left[\mathrm{M}-\mathrm{H}-3 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	459.4[M-H-3glc] ${ }^{-}$	
109*	13.467	Ginsenoside Rg_{6}	765.4800	619.4160[M-H-rha] ${ }^{-}$,	765.4[M-H] ${ }^{-}$, 619.4[M-H-rha] ${ }^{-}$,	19
			[M-H] ${ }^{-}$	601.4074[M-H-rha- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$	601.2, 457.3[M-H-rha-glc] ${ }^{-}$	
110*	13.502	20(S)-ginsenoside Rg_{3}	829.4932	$783.4807[\mathrm{M}-\mathrm{H}]^{-}, 621.4283[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	$783.5[\mathrm{M}-\mathrm{H}]^{-}, 621.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$459.3759[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}]^{-}$	459.4[M-H-2glc] ${ }^{-}$	
					$375.4\left[\mathrm{M}-\mathrm{H}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
111	13.508	[PPD 7]-O-xylosyl-di-O-glucoside	961.5334	915.4997[M-H] ${ }^{-}$, $783.4815[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	$915.4[\mathrm{M}-\mathrm{H}]^{-}$, $783.6[\mathrm{M}-\mathrm{H}-\mathrm{xyl}]^{-}$,	
Ψ			[$\mathrm{M}+\mathrm{HCOO}]^{-}$	$621.4302\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}\right.$-glc] ${ }^{-}$,	663.5, $621.2[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-\mathrm{glc}]^{-}$,	
				459.3782[M-H-xyl-2glc] ${ }^{-}$	459.2[M-H-xyl-2glc] ${ }^{-}$	
					$375.2\left[\mathrm{M}-\mathrm{H}-\mathrm{xyl}-2 \mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$	
112	13.612	Ginsenoside F_{2} or its isomer	829.4939	$783.4774[\mathrm{M}-\mathrm{H}]^{-}, 621.4308[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	$783.4[\mathrm{M}-\mathrm{H}]^{-}, 621.4[\mathrm{M}-\mathrm{H}-\mathrm{glc}]^{-}$,	19
			$[\mathrm{M}+\mathrm{HCOO}]^{-}$	$537.3370\left[\mathrm{M}-\mathrm{H}-\mathrm{glc}-\mathrm{C}_{6} \mathrm{H}_{12}\right]^{-}$,	459.4[M-H-2glc] ${ }^{-}$	
				459.3828[M-H-2glc] ${ }^{-}$		

[^1]preferred ions list.
§: The compound revised by the LC-IT-TOF/MS analysis. ${ }^{\Psi}$: The potential new compound.
Here, xyl was used to represent all possible pentose moieties, including ara and xyl, which could not be discriminated by mass data. Likewise, glc was applied to collectively name the hexosyl, include glucosyl and galactosyl.

[^0]: ${ }^{a}$ State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. E-mail: yongjiang@bjmu.edu.cn; Tel/Fax: +86-01082802719
 ${ }^{b}$ Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China

[^1]: *: The compound identified by comparing with the reference compound. ${ }^{\#}$: The compound additionally detected by the full scan along with the excluded and

