Electronic Supplementary Information

Self-healing of thermally molded commodity plastics based on heat-resistant and anti-aging healing systems

Guang Sheng Cao,^a Min Zhi Rong,^{*b} Ming Qiu Zhang^{*b}, Xiao Ji Ye^c

^aKey Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China

^bMaterials Science Institute, Sun Yat-sen University, Guangzhou 510275, P. R. China ^cGuangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center, Guangzhou 510070, P. R. China

(b)

Fig. S1 (a) FTIR spectrum of 2-methyl-2-adamantylmethacrylate-loaded

microcapsules in comparison with those of PMF shell and pure 2-methyl-2adamantylmethacrylate. (b) FTIR spectrum of trimethylolpropane trimethacrylateloaded microcapsules in comparison with those of PMF shell and pure trimethylolpropane trimethacrylate.

(a)

(b)

Fig. S2 (a) ¹H NMR and (b) FTIR spectra of the macroinitiator PMMA-Br. The numerals shown in (a) are the integrations of the peaks.

Fig. S3 Thermal decomposition behavior of the macroinitiator PMMA-Br.

(b)

Fig. S4 (a) ¹H NMR and (b) FTIR spectra of the ligand $Me_6[14]aneN_4$. The numerals shown in (a) are the integrations of the peaks.

Fig. S5 Thermal decomposition behavior of the ligand Me₆[14]aneN₄.

Fig. S6 Scanning electron microscopic (SEM) photos of SiO₂ coated PS-MMA particles carrying the coordination compound of Me₆[14]aneN₄ and CuBr.

Fig. S7 3D distribution of healing capsules in (a) PS, (b) PMMA and (c) ABS based composites. Content of 2-methyl-2-adamantylmethacrylate-loaded microcapsules in

PS composite: 15 wt%. Contents of trimethylolpropane trimethacrylate-loaded microcapsules in PMMA and ABS composites: 15 wt%.

Fig. S8 Photos of trimethylolpropane trimethacrylate (a, b) in liquid state at room temperature and (c, d) in solid state after being heated to 170 °C for 45 min in the presence of air. The results demonstrate that auto-polymerization must have taken place.

Fig. S9 FTIR spectrum of PMMA-Br particles carrying the coordination compound of the ligand and cuprous bromide in comparison with those of the ligand and PMMA-Br.

Fig. S10 FTIR spectrum of silicon dioxide coated PS-MMA microparticles carrying the coordination compound of $Me_6[14]aneN_4$ and cuprous bromide in comparison with those of the ligand and silicon dioxide coated PS-MMA microparticles.

Fig. S11 Time dependences of weight of 2-methyl-2-adamantylmethacrylate-loaded microcapsules, trimethylolpropane trimethacrylate-loaded microcapsules, PMMA-Br particles carrying the coordination compound of $Me_6[14]aneN_4$ and cuprous bromide, and silicon dioxide coated PS-MMA microparticles carrying the coordination compound of $Me_6[14]aneN_4$ and cuprous bromide. Testing atmosphere: oxygen. Heating rate: 10 °C/min.