Supporting Information

Metabolic engineering of TiO₂ nanoparticles in *Nitzschia palea* to form diatom nanotubes: an ingredient for solar cells to produce electricity and biofuel[†]

Shristy Gautam¹, Mrinal Kashyap¹, Shradhey Gupta², Vikas Kumar², Benoit Schoefs³, Richard Gordon⁴, Clayton Jeffryes⁵, Khashti Ballabh Joshi^{*2} and Vandana Vinayak^{*1}

^{1*}Diatom DBT Research Lab, Department of Crim. & Forensic Science, Dr. H.S. Gour Central University, Sagar, M.P. Emails: <u>kapilvinayak@amail.com</u>; ²Department of Chemistry, Dr. H.S. Gour Central University, Sagar, M.P.; ³MicroMar, Mer Molécules Santé, IUML—FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France; ⁴Gulf Specimen Aquarium & Marine Laboratory, Panacea, FL 32346, USA C.S. Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA; ⁵Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA

TableS1. Lifetime of sample without presence of any quencher.

Sample	Lifetime (ns)
Diatom	3.57
Denatured Diatom	3.72

Supporting Figures:

Figure S1. High resolution atomic force micrographs of *Nitzschia palea*, (A) control samples showing the surface morphology of diatom without feeding with Ti and (B) corresponding 3-D AFM micrograph.

SEM IMAGES TAKEN ON DIFFERENT DAYS AFTER FEEDING WITH Ti (0.125 mM to 1.25 mM) AND Si (200 mM)

Figure S2: Figure depicts that the deposition of Ti on pores of *Nitzschia palea* after feeding with Titanium (0.125mM to 1.25mM (400μ L/hr) and Silica (200 mM) (400μ L/hr) for 10 hrs.

Figure S3: The deposition of Ti on pores of *Nitzschia palea* after feeding with Titanium (0.125mM to 1.25mM (400μ L/hr) and Silica (200mM) (400μ L/hr) for 10 hrs. *Top:* on 11th and *Bottom:* 12th day respectively.

Figure S4: Intact and magnified images of Ti treated diatom after the after feeding with Titanium (0.125mM to 1.25mM (400 μ L/hr) and Silica (200mM) (400 μ L/hr) for 10 hrs on 14th and 16th day respectively. SEM micrograph clearly showing the deposition of Ti on pores of *Nitzschia palea*.

Figure S5: SEM micrograph of *Nitzschia palea* diatoms after feeding with Titanium (0.125mM to 1.25mM (400μ L/hr) and Silica on 18th day. The micrograph clearly showing the deposition of Ti on pores of and adequate reduction of sizes of pores on 18th day in magnified images(right).

Figure S6. Depicts that the UV-Vis spectra of pure diatoms and diatoms in the presence of Ti, which shows the presence of tryptophan/tyrosine residue and complex formation between Ti and diatom.

(I) FTO with TiO₂ doped Frustule

(II) Carbon soot coated FTO

Figure S7. Depicts the electrodes constructed for DSSC; (I) shows FTO electrode with TiO_2 doped diatom frustules and (II) shows carbon soot coated on FTO plate.