Electronic Supplementary Information

Fast adsorption and removal of 2-methyl-4-chlorophenoxy acetic acid from aqueous solution with amine functionalized zirconium

metal-organic framework

Cuixiang Wei,^a Dan Feng,^a and Yan Xia^{*abcd}

^aResearch Center for Analytical Sciences, College of Chemistry, Nankai University,

Tianjin 300071, China

^bKey Laboratory of Biosensing and Molecular Recognition

^cState Key Laboratory of Medicinal Chemical Biology (Nankai University)

^dCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)

Text S1. Preparation of UiO-66

UiO-66 was synthesized according to the work of Cavka et al.¹ Briefly, ZrCl₄ (0.159 g) and terephthalic acid (0.102 g) were well mixed with 20 mL DMF by sonication in a Teflon lined steel autoclave. The autoclave was then placed in a preheated oven at 120°C for 24 h. After that, the white solid product of UiO-66 was collected by centrifugation at 8000 rpm for 5 min and washed with DMF for three times. Then, the obtained UiO-66 was soaked in ethanol overnight to exchange the DMF from the cavities of UiO-66. Finally, the solid was dried at 150°C under vacuum overnight and kept in a desiccator.

Scheme S1 Chemical structure of MCPA.

Fig. S1 Zeta potentials of UiO-66-NH $_2$ in water under various pH at 25°C.

Fig. S2 N_2 adsorption-desorption isotherms of UiO-66-NH₂.

Fig. S3 Effect of adsorbent dosage on the adsorption of MCPA on UiO-66-NH₂.

Fig. S4 Effect of scaled up quantities keeping the same ratio

on the adsorption of MCPA on UiO-66-NH₂ (1 g L^{-1} of adsorbent).

Fig. S5 The adsorption kinetics of MCPA at different initial

concentrations on UiO-66-NH_2 at 25°C and pH 6.0 within 30 min

Fig. S6 Plots of pseudo-first-order kinetics for the adsorption of MCPA at different initial concentrations on UiO-66-NH₂ at 25°C and pH 6.0.

Fig. S7 Linearized Freundlich isotherms for MCPA adsorption

by the UiO-66-NH $_2$ at different temperatures.

Fig. S8 Plots of $\ln (q_e/C_e)$ vs. q_e at various temperatures

for the adsorption of MCPA on UiO-66- NH_2 .

Fig. S9 Plot of $\ln K_0$ against 1/T for the adsorption of MCPA on UiO-66-NH₂.

Fig. S10 Effect of ionic strength on the adsorption of MCPA on UiO-66-NH₂

Fig. S11 XRD patterns of (a) regenerated UiO-66-NH₂ after six cycles

(b) as-synthesized UiO-66-NH₂

Fig. S12 FT-IR spectra of regenerated UiO-66-NH₂

after six cycles and as-synthesized UiO-66-NH₂

Fig. S13 Linearized Langmuir isotherms for MCPA

adsorption by different adsorbents at 25°C.

References

1 J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, *J. Am. Chem. Soc.*, 2008, **130**, 13850.