Electronic supplementary information

Mesoporous Iron Oxide Nanowires: Synthesis, Magnetic and Photocatalytic Properties

Kinjal Gandha,^a Jeotikanta Mohapatra,^a Mohammad Kabir Hossain,^b Kevin Elkins,^a Narayan Poudyal,^a Krishnan Rajeshwar,^b and J. Ping Liu^{a*}

^aDepartment of Physics, University of Texas at Arlington, Arlington, Texas 76019, USA

^bDepartment of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA

*To whom correspondence should be addressed. E-mail: pliu@uta.edu (J. Ping Liu). Phone: +1-817-272-2815

Fig. S1: XRD pattern of NWs samples produced by annealing FeOOH NWs at 400 °C. A mixture of Fe_3O_4 and Fe phases is confirmed.

Fig. S2: HRSEM images of as-prepared (a) FeOOH NWs, (b) α -Fe₂O₃ NWs, (c) Fe₃O₄ NWs, and (d) α -Fe NWs.

Fig. S3: Calculation of the band gap from the UV-visible absorption spectra. The band gap energies estimated from the intercept of the tangents to the plots were 3.1, 2.2 and 2.5 eV for the ZnO nanoparticles, α -Fe₂O₃NWs and α -Fe₂O₃/ZnO NNHs respectively.

Fig. S4: Photographs showing complete decolorization of (a) Rhodamine B, (b) methyl orange and (c) methylene blue under visible light for 90 min. The initial concentration/loading of the dye and photocatalyst (α -Fe₂O₃/ZnO NNHs) were 20 μ M and 40 mg, respectively.

Fig S5: Comparison of photocatalytic activity of α -Fe₂O₃/ZnO NNHs with pristine ZnO nanoparticles, commercial α -Fe₂O₃, α -Fe₂O₃ NWs. The photocatalytic activity measurement was performed under identical conditions (equivalent catalyst concentration, temperature and oxygen flow)

Fig. S6: Absorption spectra for (a) MB and (b) MO dyes as a function of irradiation time of simulated solar light in the presence of α -Fe₂O₃/ZnO NNHs (40 mg). The initial concentration of dye used for the photodegradation experiment was 20 μ M. (c) Degradation efficiency of α -Fe₂O₃/ZnO NNHs with different ZnO nanoparticles loading and commercial P-25 TiO₂.

Fig S7: Separation of magnetic α -Fe₂O₃/ZnO NNHs from the solution after photocatalytic degradation of RhB dye. (a) Initial dye solution 20 μ M/ml, (b) α -Fe₂O₃/ZnO NNHs dispersed in RhB dye solution and (c) after photocatalytic dye degradation, the α -Fe₂O₃/ZnO NNHs were separated from the cleaned water by applying a magnetic field.

Fig S8: SEM images of α -Fe₂O₃/ZnO NNHs (a) before, and (b) after photocatalytic dye degradation.