Supplementary materials

Radioprotective effects of ultra-small citrate-stabilized cerium oxide nanoparticles *in vitro* and *in vivo*

A. L. Popov^a, S. I. Zaichkina^a, N. R. Popova^a, O. M. Rozanova^a, S. P. Romanchenko^a, O. S. Ivanova^c, A. A. Smirnov^a, E.V. Mironova^a, I. I. Selezneva^{a,b}, V. K. Ivanov^{c,d}

^aInstitute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia ^bPushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290 Russia ^cKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow ^dNational Research Tomsk State University

Corresponding author: 142290, Moscow Region, Pushchino, Institutskaya 3, ITEB RAS tel. 8 (4967) 739148, e-mail: antonpopovleonid@gmail.com

Figure S2 TEM of citrate stabilized cerium oxide nanoparticles

Figure S3 Intercellular localization of citrate-stabilized oxide nanoparticles in primary embryonic fibroblasts. Nuclei staining by Hoechst 33342.

Figure S6 Biodistribution of cerium oxide nanoparticles administered SHK mice. Mice were administered nanoceria at 8,3 μ M/g via intraperitoneal routes. Control mice were administered PBS. Spleen, heart, kidney and liver were collected a week after cerium oxide nanoparticles administration and were evaluated for cerium deposition concentrations using inductively coupled plasma mass spectrometry (ICP-MS). The liver showed the greatest deposition followed closely by the spleen.