Supplementary Information

Benzothiophene-flanked diketopyrrolopyrrole polymers: impact of isomeric frameworks on carrier mobilities

Jianyao Huang, ‡^a Xiaotong Liu, ‡^{a,b} Dong Gao, ^{a,b} Congyuan Wei, ^{a,b} Weifeng Zhang, ^a and Gui Yu*^{a,b}

^aBeijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

Contents

- 1. ¹H NMR and ¹³C NMR spectra of new compounds
- 2. Optical and electrochemical properties
- 3. Field-effect characteristics
- 4. GIXRD profiles
- 5. AFM

1. ¹H NMR and ¹³C NMR spectra of new compounds

5BrBTCN

133.95 138.96 138.96 133.90 133.70 119.94 119.94

4.43

£1.88

6BrBTCOOEt

7.48 7.48 7.48 7.48 7.48

6BrBTCN

2. Optical and electrochemical properties

Fig. S1 UV-vis absorption spectra of the 5BrBTDPP and 6BrBTDPP monomers in dilute chloroform.

Fig. S2 Cyclic voltammograms of P5BTDPP-DTE and P6BTDPP-DTE using thin films drop-casted on a glassy carbon electrode as a working electrode in dichloromethane solution containing 0.1 M n- Bu_4NPF_6 as a supporting electrolyte.

Table S1 Summary of optical and electrochemical properties of P5BTDPP-DTE and P6BTDPP-DTE

	λ_{\max} (nm)		_					
Polymer	soln.	film	Eg ^{opt} (eV)	E _{red} ^{onset} (eV)	E _{ox} ^{onset} (eV)	Е _{номо} (eV)	E _{LUMO} (eV)	E ^{cv} (eV)
P5BTDPP-DTE	586	582	1.60	-0.99	0.50	-4.90	-3.41	1.49
P6BTDPP-DTE	632	644	1.56	-1.02	0.48	-4.88	-3.38	1.50

3. Field-effect characteristics

Table S2 Conditions for fabricating field-effect transistors

Fig. S3 A preliminary test of mobilities for each annealing temperatures. Both P5BTDPP-DTE (a) and P6BTDPP-DTE (b) tend to afford the best hole mobilities after annealing at 160°C.

Fig. S4 Statistical display for distribution of mobilities of P5BTDPP-DTE and P6BTDPP-DTE based thin film transistors

Fig. S5 Differential mobilities of two polymers: (a) P5BTDPP-DTE, (b) P6BTDPP-DTE.

4. GIXRD profiles

Fig. S6 One-dimensional GIXRD profiles of P5BTDPP-DTE ($\lambda = 1.54 \text{ Å}$): (a) out-of-plane, (b) in-plane.

Fig. S7 One-dimensional GIXRD profiles of P6BTDPP-DTE ($\lambda = 1.54 \text{ Å}$): (a) out-of-plane, (b) in-plane.

Fig. S8 AFM images of the (a) P5BTDPP-DTE and (b) P6BTDPP-DTE thin films.