PREPARATION OF POLYSULFONE BASED PANI-TiO₂ NANOCOMPOSITE HOLLOW FIBER MEMBRANES FOR INDUSTRIAL DYE REJECTION APPLICATION

Supporting Information

S1 Spinning conditions for hollow fiber membranes

Dope composition	PSf/PANI-TiO ₂ /NMP	
	PSf/NMP (For Neat)	
Dope Extrusion Rate (DER)	5 mL/min	
Bore fluid	Distilled water	
Bore Extrusion Rate (BER)	5/4 mL/min	
Air gap	5 cm and 10 cm	
Spinneret Dimension (o.d/i.d)	1.15/0.55 (mm)	

S2 Viscosity of dope solutions

Dope solutions of	Viscosity (mPas)
P-A, P-B	1661.9
P-0.5-A, P-0.5-B	1752.4
P-1.0-A, P-1.0-B	1876.5

S3

Reactive Black 5

Reactive Orange 16

Structures of Reactive Black 5 and Reactive Orange 16

FTIR spectra of PANI, PANI-TiO₂ and TiO₂

A broad peak observed around 3400 cm⁻¹ in TiO₂, which can be ascribed to the stretching vibration of -OH group and a minor peak at 1638 cm⁻¹ is attributed to the adsorbed water on TiO₂.¹ Broad peak range of 1000 to 550 cm⁻¹ can be ascribed to the Ti-O-Ti bonds.

Pure PANI exhibits peaks at 1567 cm⁻¹ and 1487 cm⁻¹. These are attributed to the C=N and C=C stretching vibrations of quinoid and benzenoid rings of PANI respectively. The C-N stretching mode of benzenoid ring gave peaks at 1298 cm⁻¹ and 1246 cm⁻¹. Further peaks observed at 1141 cm⁻¹ and 812 cm⁻¹ can be attributed to the C-H in plane and out of plane bending vibrations respectively.² The peaks present in pure PANI and pure TiO₂ were also observed in PANI-TiO₂ nanocomposite as shown in the above figure.

X-Ray Diffraction patterns of pure PANI, PANI coated TiO_2 and pure TiO_2

Two broad peaks at 2θ =17° and 23° correspond to the (111) and (110) planes in PANI. Pure TiO₂ exhibits sharp peaks at 25.3°, 37.8°, 48.1°, 54.6° and 62.6° with respect to the planes (101), (103), (200), (105) and (213) of anatase phase of TiO₂^{3,4}. The PANI-TiO₂ nanocomposite exhibited the peaks at 17° and 23° due to PANI, also including all the peaks of TiO₂, confirming the presence of PANI coating on TiO₂ nanotubes.

Literature	Work	For membranes containing 1.0 wt.% of PANI-TiO2 R				Referen ce	
		% FRR	BSA Rejection	Pore size (nm)	Contact Angle (degrees)	Application	
Pereira et al.	PSf flat sheet membranes containing PANI coated TiO ₂ nanotubes with PEG as pore former	83%	Not Applicable	10.72	64.0	Potentially toxic metal ion rejection for metal ions Cd ²⁺ and Pb ²⁺	5
Teli et al.	PSf flat sheet membranes containg PANI coated TiO ₂ nanoparticle s	79%	95-99%	8.11	52.0	Not Applicable	6
Current work	PSf hollow fiber membranes containing PANI coated TiO ₂ nanotubes	90.03%	99.9%	1.88	72.8	Rejection study of Reactive Black-5 and Reactive Orange-16	

Comparison with the reported data

Comparison of Pure Water Flux of membranes with reported literature

PANI-TiO ₂	Pure water flux in L/m ² /h at 0.2 MPa					Pure water flux in L/m ² /h at 0.2 MPa		
composition	Pereira et al.	Teli et al.	Current work					
Neat PSf	18.69	72	65.12					
0.5 Wt.%	20.56	-	49.82					
1.0 wt.%	65.76	170	27.48					

Elemental mapping on P-0.5-A membrane showing uniform distribution of titania

EDX of P-1.0-B membrane

S8

Images showing rejection of Reactive Black 5 by membranes A) P-A B) P-B C) P-0.5-A D) P-0.5-B E) P-1.0-A F) P-1.0-B

Images showing rejection of Reactive Orange 16 by membranes A) P-A B) P-B C) P-0.5-A D) P-0.5-B E) P-1.0-A F) P-1.0-B

References

- 1. F. Cheng, S. M. Sajedin, S. M. Kelly, A. F. Lee and A. Kornherr, *Carbohydr. Polym.*, 2014, **114**, 246-252.
- 2. V. R. Pereira, A. M. Isloor, U. K. Bhat and A. F. Ismail, *Desalination*, 2014, **351**, 220-227.
- 3. Y. Li, Y. Yu, L. Wu and J. Zhi, *Appl. Surf. Sci.*, 2013, **273**, 135-143.

- 4. S. Nasirian and H. Milani Moghaddam, *Int. J. Hydrogen Energy*, 2014, **39**, 630-642.
- 5. V. R. Pereira, A. M. Isloor, A. Al Ahmed and A. Ismail, *New J. Chem.*, 2015, **39**, 703-712.
- 6. S. B. Teli, S. Molina, A. Sotto, E. G. a. Calvo and J. d. Abajob, *Ind. Eng. Chem. Res.*, 2013, **52**, 9470-9479.