Facile Synthesis of D- π -A structured Dyes and their applications towards cost effective

fabrication of solar cell as well as sensing of hazardous Hg (II)

Priyanka P. Kumavat, Prashant K. Baviskar, Babasaheb R. Sankapal, Dipak S. Dalal*

CORRESPONDING AUTHOR FOOTNOTE

Dr. Dipak S. Dalal

Tel: +91- (257) 2257432

E-mail: dsdalal2007@gmail.com

Supporting Information S1

Fig S1. Plausible mechanism for the synthesis of compound 1 and 2

Fig S2.1. ¹H NMR of Compound (i) in DMSO-*d6*

Fig S2.3. Mass Spectra of Compound (i)

Fig S2.4. ¹H NMR of Compound (ii) in DMSO-d6

Fig S2.5. ¹³C NMR of Compound (ii) in DMSO-d6

Sample Name Inj Vol	b2-0 2	Position InjPosition	p1b1	Instrument Name SampleType	Instrument 1 Sample	User Name IRM Calibration Status	QTOF\admin Success
Data Filename	b2-0	ACQ Method	2MINS DIRECT MS.m	Comment		Acquired Time	13/01/2015 6:05:10
×10 ⁵ +E	SI Scan (0.1	45 min) Frag=165.	0V				
1.45-							
1.4-							
1.35-							
13-							
1.25-							
1.2-						F.69 DE	
1.15-						569.20	
1.1-							
1.05-							
1-							
0.95-							
0.9-							
0.85-							
0.8-							
0.75-							
0.7-							
0.65-							
0.6-							
0.55-							
0.5-							
0.45-				369 15			
0.4-				000.10			
0.35-							
0.3-							
0.25-		318.00				490.44	
0.2-		218.09				490.44	
0.15-							
0.1-			273.45				
0.05-							
0.00		1					

Fig S2.6. Mass spectra of Compound (ii)

Fig S2.7. ¹H NMR of Compound 1 in DMSO-d6

Fig S2.8. ¹³C NMR of Compound 1 in DMSO-d6

Fig S2.9. HRMS of Compound 1

Fig S2.10. ¹H NMR of Compound 2 in DMSO-d6

Fig S2.11. ¹³C NMR of Compound 2 in DMSO-d6

Fig S2.12. HRMS of Compound 2

Supporting Information S3

Optical band gaps (E_g^{opt})

Fig S3.1. Optical Band gap of TiO₂

Fig S3.2. Optical Band gap of Compound 1 and compound 2

Supporting Information S4

¹H-NMR titration

Fig S4.1. ¹H-NMR spectra of Receptor 1 upon the addition of 0,1,2,5 equiv of Hg (II) in DMSO-*d6*

Fig S4.2. ¹H-NMR spectra of Receptor 2 upon the addition of 0,1,2,5 equiv of Hg (II) in DMSO-*d6*

Fig S5.1. Mole ratio plot for Receptor 1. Hg(II)

Fig S5.2. Normalized plot for Receptor 1. Hg(II)

Fig S5.3. Mole ratio plot for Receptor 2. Hg(II)

Fig S5.4. Normalized plot for Receptor 2. Hg(II)