# **Supporting information**

# Ag-doped Nano Magnetic γ-Fe<sub>2</sub>O<sub>3</sub>@DA Core–Shell Hollow

# Spheres: an efficient and recoverable heterogeneous catalyst

# for A<sup>3</sup>, KA<sup>2</sup> Coupling Reactions and [2+3] cycloaddition

A. Elhampour<sup>\*,a</sup>, M. Malmir<sup>\*,b</sup> E. Kowsari, F. Boorboor ajdari and F. Nemati

<sup>a</sup> Department of Chemistry, Semnan University, Semnan, Iran, Zip Code: 35131-19111, E-mail: Elhampour\_ali@yahoo.com

<sup>b</sup> Department of Chemistry, Amirkabir University of Technology, Hafez Avenue, No. 424, Tehran, Iran, E-mail address: Masi.malmir@yahoo.com

| 1. General information                                                      | S3      |
|-----------------------------------------------------------------------------|---------|
| 1.1. General details                                                        | S3      |
| 2. Characterizations of Catalyst                                            | S4      |
| 2.1. FT-IR analysis                                                         | S4      |
| 2.2. XRD patterns                                                           | S5      |
| 2.3. TGA analysis                                                           | S5      |
| 2.4. VSM Curves                                                             | S6      |
| 2.5. FEG-SEM-EDS analysis                                                   | S6      |
| 2.6. TEM image                                                              | S7      |
| 3. Spectral data for selected compounds                                     | S8-S15  |
| 3.1. Copies of <sup>1</sup> H and <sup>13</sup> C NMR for selected products | S16-S55 |
| 4. Reference                                                                | S56     |

### 1. General information

The process for the preparation of the magnetic Fe<sub>2</sub>O<sub>3</sub>@DA/Ag hollow sphere catalyst is schematically described in scheme 1. The nano magnetic Fe<sub>2</sub>O<sub>3</sub>@DA/Ag hollow sphere was prepared from commercially inexpensive available materials and fully characterized using, the corresponding data, provided by FT-IR, FE-SEM, TEM, XRD, TGA, and VSM techniques.

### 1.1. General details

All chemicals, including FeCl<sub>3</sub>·6H<sub>2</sub>O, trisodium citrate dihydrate, sodium acetate trihydrate, ethanol, ethylene glycol (EG), PVP, urea, dopamine, AgNO<sub>3</sub> and NH<sub>3</sub>·H<sub>2</sub>O, were analytical grade reagents, purchased from Sigma-Aldrich, and used without further purification. The progress of reaction was monitored by TLC on commercial aluminumbacked plates of silica gel 60 F254, visualized, using ultraviolet light. Melting points were determined in open capillaries using an Electrothermal 9100 without further corrections.<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded using a Bruker DRX-400 spectrometer at 400 and 100 MHz respectively. magnetic-Fe<sub>2</sub>O<sub>3</sub>@DA/Ag hollow sphere was characterized by; FT-IR spectra were obtained with potassium bromide pellets in the range of 400–4000 cm<sup>-1</sup> using a Shimadzu 8400s spectrometer; X-ray diffraction (XRD) was detected by Philips using Cu-Ka radiation of wavelength 1.54Å; Scanning electron Microscopy, FE-SEM-EDX, analysis was performed using Tescanvega II XMU Digital Scanning Microscope. Samples were coated with gold at 10 mA for 2 min prior to analysis; the magnetic properties were characterized using a vibrating sample magnetometer (VSM, Lakeshore7407) at room temperature. Thermo-gravimetric

analyses (TGA) were analyzed with a LINSEIS modele STS PT 16000 thermal analyzer under air atmosphere at a heating rate of 5 °C min<sup>-1</sup>.

### 2. Characterizations of Catalyst



### 2.1. FT-IR analysis

Figure 1. The FT-IR spectra of (a) h-Fe<sub>2</sub>O<sub>3</sub>, (b) h-Fe<sub>2</sub>O<sub>3</sub>@DA and (c) h-Fe<sub>2</sub>O<sub>3</sub>@DA/Ag.

## 2.2. X-ray diffraction spectra



Figure 2. XRD pattern of (a) h-Fe<sub>2</sub>O<sub>3</sub>, (b) h-Fe<sub>2</sub>O<sub>3</sub>@DA and (c) h-Fe<sub>2</sub>O<sub>3</sub>@DA/Ag

### 2.3. X-ray diffraction spectra



Figure 3. TGA analysis of (a) h-Fe<sub>2</sub>O<sub>3</sub> and (b) h-Fe<sub>2</sub>O<sub>3</sub>@DA/Ag.

### 2.4. VSM analysis



Figure 4. The magnetization curves of (a) h-Fe<sub>2</sub>O<sub>3</sub>, (b) h-Fe<sub>2</sub>O<sub>3</sub>@DA and (c) h-Fe<sub>2</sub>O<sub>3</sub>@DA/Ag.

### 2.5. FE-SEM-EDS analysis



Figure 5. The FEG-SEM-EDS analysis of (a,b) h-Fe<sub>2</sub>O<sub>3</sub>, (c,d) h-Fe<sub>2</sub>O<sub>3</sub>@DA and (e,f) h-Fe<sub>2</sub>O<sub>3</sub>@DA/Ag.

# 2.6. TEM image



Figure 6. The TEM image of h-Fe<sub>2</sub>O<sub>3</sub>@DA/Ag.

3. Spectral data for selected compounds



**1-(1,3-diphenylprop-2-ynyl)piperidine (table 1, 5a):** Pale yellow oily liquid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm) δ 1.45-1.49 (m, 2H), 1.58-1.65 (m, 4H), 2.59 (t, 4H), 4.81 (s, 1H), 7.31-7.40 (m, 6H), 7.53-7.55 (m, 2H), 7.65-67 (d, J=7.6 Hz, 2H).



**1-(3-phenyl-1-(thiophen-2-yl)prop-2-ynyl)piperidine (table 1, 5g):** Yellow solid; mp 50-51 °C (Lit.<sup>1</sup> 52-53 °C); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm) δ 1.48-1.52 (m, 2H), 1.63-1.70 (m, 4H), 2.62-2.71 (m, 4H), 5.03 (s, 1H), 7.00 (dd, J<sup>1</sup>=J<sup>2</sup>=3.6 Hz, 1H), 7.25-7.30 (m, 1H), 7.31 (d, J=4.4 Hz, 2H). 7.36-7.38 (m, 3H), 7.54-7.57 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm) δ 24.4, 26.1, 50.6, 58.2, 85.3, 86.9, 123, 125.3, 125.8, 126.2, 128.2, 128.3, 131.8, 144.



1-(3-phenyl-1-(4-(3-phenyl-1-(piperidin-1-yl)prop-2-ynyl)phenyl)prop-2-

**ynyl)piperidine (table 1, 5h):** White solid; mp 157-159 °C (Lit.<sup>1</sup> 158-160 °C); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm) δ 1.47 (m, 2H), 1.59-1.63 (m, 4H), 2.59 (m, 4H), 4.81 (s, 1H), 7.33-7.35 (m, 3H), 7.52-7.55 (m, 2H), 7.63 (s, 2H).



**1-(1-(naphthalen-3-yl)-3-phenylprop-2-ynyl)piperidine (table 1, 5i):** Yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 1.47-1.51 (m, 2H), 1.60-1.67 (m, 4H), 2.64 (t, 4H), 4.97 (s, 1H), 7.36-7.40 (m, 3H), 7.48-7.52 (m, 2H), 7.58-7.61 (m, 2H), 7.79 (dd, J<sup>1</sup>=J<sup>2</sup>=8.4 Hz, 1H), 7.85-7.91 (m, 3H), 8.11 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm) d 24.4, 26.2, 50.8, 62.5, 86, 88.1, 123.3, 125.8, 125.9, 126.7, 127.2, 127.5, 127.7, 128.1, 128.12, 131.8, 132.9, 133.1, 136.3.



**N,N-diethyl-1,3-diphenylprop-2-yn-1-amine (table 1, 5r):** Pale yellow oily liquid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm) δ 1.04 (m, 6H), 2.36-2.62 (m, 4H), 5.19 (s, 1H), 7.15-7.27 (m, 4H), 7.29-7.38 (m, 3H), 7.39-7.41 (m, 2H).



**4-(3-phenylprop-2-ynyl)morpholine (table 1, 6c):** yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm) δ 2.64-2,67 (m, 6H), 3.52 (s, 3H), 3.69-3.71 (m, 1H), 3.77-3.79 (m, 6H), 7.28-7.31 (m, 4H), 7.43-7.46 (m, 2H).



**1-(1-cyclohexyl-3-phenylprop-2-ynyl)pyrrolidine (table 1, 6i):** Colorless liquid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm) δ 1.05-1.36 (m, 5H), 1.56-1.63 (m, 2H), 1.75-1.79 (m, 6H), 1.82-2.10 (m, 4H), 2.5-2.98 (m, 4H), 3.36-3.38 (d, J =7.6 Hz, 1H), 7.14-7.33 (m,

3H), 7.50-7.63 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm) δ 24.9, 26.9, 27.1, 28.3, 32.7, 33, 42.9, 51.1, 61.1, 86.1, 88.9, 125.9, 128.9, 129.8, 132.6.



**4-(1-phenylhex-1-yn-3-yl)morpholine (Table 1, 6m):** Yellow oil; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 0.97 (m, 3H), 1.45-1.75 (m, 4H), 2.67–2.70 (m, 2H), 2.79–2.83 (m, 2H), 3.82-4.13 (m, 1H), 4.15-4.17 (m, 4H), 7.46–7.50 (m, 3H), 7.62–7.64 (m, 2H).



**1-(1-(2-p-tolylethynyl)cyclohexyl)piperidine (Table 2, 8e):** Yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm) δ 1.39-1.93 (m, 16H), 2.17-2.20 (m, 2H), 2.53 (s, 3H), 2.73-2.83 (m, 2H), 7.26-7.27 (m, 3H), 7.46-7.48 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm) δ 21.32, 23.4, 24.4, 25, 26.7, 37.6, 47.9, 58.8, 85.4, 92.1, 123, 127.6, 128.3, 133.



**4-(1-(2-phenylethynyl)cyclohexyl)morpholine (Table 2, 8f):** Pale yellow oily liquid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm) δ 1.28-1.30 (m, 1H), 1.52 (m, 2H), 1.63-1.67 (m, 3H), 1.73 (br.s, 2H), 2.03-2.05 (m, 2H), 2.74 (br.s, 4H), 3.78 (br.s, 4H), 7.27 (m, 3H), 7.44-7.45 (m, 2H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm) δ 22.7, 25.7, 35.4, 46.6, 58.8, 67.4, 86.4, 89.8, 123.4, 127.7, 128.1, 131.7.



**4-(1-( (4-fluorophenyl)ethynyl)cyclohexyl)morpholine (Table 2, 8i):** Yellow oil; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 1.26-1.34 (m, 1H), 1.57-1.62 (m, 2H), 1.69-1.78 (m, 3H), 1.80-1.86 (m, 2H), 2.00-2.02 (m, 2H), 2.78 (s, 4H), 3.70 (br.t, J = 4.2 Hz, 4H), 6.97-7.00 (t, J = 8.6 Hz, 2H), 7.32-7.40 (m, 2H).



**5-Phenyl-1***H***-tetrazole (Table 3, 9a):** White solid; mp 213–215 °C (Lit.<sup>2</sup> 214–215 °C); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 7.68 (s, 3H, Ph), 7.92 (s, 2H, Ph); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 126.6, 128.6, 130.3, 134.6, 155.



**5-(4-Nitrophenyl)-1H-tetrazole (Table 3, 9b):** Yellow solid; mp 218–219 °C (Lit.<sup>2</sup> 220-222 °C); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 8.30 (d, 2H, *J* 8.4, Ph), 8.39 (d, 2H, *J* 8.8, Ar-H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 127.6, 129.1, 131, 149.5.



**5-(4-Methylphenyl)-1H-tetrazole (Table 3, 9c):** White solid; mp 249-251 °C (Lit.<sup>2</sup> 247-249 °C); <sup>1</sup>H NMR (250 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 2.35 (s, 3H, CH<sub>3</sub>), 7.37 (d, 2H, *J* 7.6 Hz, Ph), 7.90 (d, 2H, *J* 7.5 Hz, Ph).



**5-(3-Chlorophenyl)-1H-tetrazole (Table 3, 9g):** White solid; mp 138-140 °C (Lit.<sup>3</sup>137-139 °C); <sup>1</sup>H NMR (250 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 7.55 (m, 2H, Ph), 7.96 (d, 1H, *J* 7.6, Ph), 7.99, (s, 1H); <sup>13</sup>C NMR (62.9 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 125.4, 126.2, 126.4, 130.7, 131.1, 133.9, 154.6.



**5-(4-Chlorophenyl)-1H-tetrazole (Table 3, 9h):** White solid; mp 251-253 °C (Lit.<sup>2</sup> 251-252 °C); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 7.61 (d, 2H, *J* 8.4, Ph), 8.09 (d, 2H, *J* 8.8, Ph).



**5-(4-Hydroxyphenyl)-1H-tetrazole (Table 3, 9j):** White solid; mp 235 °C (Lit.<sup>2</sup> 233-234 °C); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 6.91 (d, 2H, *J* 8.4, Ph), 7.58 (d, 2H, *J* 8.4, Ph), 10.11 (s broad, OH); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 116.1, 117.4, 128.8, 153.2, 159.8.



**4-(1H-tetrazol-5-yl)-benzonitrile (Table 3, 9k):** White solid; mp 257-259 °C (Lit. <sup>4</sup> 258-260 °C); <sup>1</sup>H NMR (250 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 8.06 (d, 2H, *J* 7.1, Ph), 8.19 (d, 2H, *J* 8.6, Ar-H); <sup>13</sup>C NMR (62.9 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 113.3, 118.1, 127.6, 128.7, 133.1, 155.2, 162.2.



**2-(1H-tetrazol-5-yl)pyridine (Table 3, 9l):** White solid; mp 210-213 °C (Lit.<sup>5</sup> 211-212 °C); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 7.75 (s, 1H, Ph), 8.07 (s, 1H, Ph), 8.20 (d, 1H, *J* 8.4 Ph), 8.63 (s, 1H).



**4-(1H-tetrazol-5-yl)pyridine (Table 3, 9m):** White solid; mp 256-258 °C (Lit.<sup>6</sup> 256-258 °C); <sup>1</sup>H NMR (250 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 8.10 (d, 2H, *J* 6.0, Ph), 8.77 (d, 2H, *J* 6.5, Ph); <sup>13</sup>C NMR (62.9 MHz, DMSO-*d*<sub>6</sub>, ppm) δ 120.9, 121.3, 133.8, 149.9, 165.7.



# 3.1. Copies of 1H and 13C NMR for selected products

Figure 7. <sup>1</sup>H NMR spectrum of (table 1, 5a)



Figure 8. <sup>1</sup>H NMR, Expand spectrum of (table 1, 5a)







Figure 10 <sup>1</sup>H NMR, Expand spectrum of (table 1, 5g)



Figure 11 <sup>13</sup>C NMR, Expand spectrum of (table 1, 5g)

# NAME 1Nemati-Firouzeh 13C EPRINDO 3 3 Data 2014625 3 INSTRUD 15.23 1 INSTRUD xppg 3 PULPROG xppg 3 Status 86556 3 SULENT 2003879142 4003879142 AOTES 331988 sec 6 RG 2033988 sec 6 PULPROS 2033988 sec 76 NM 24004862 1 PL 203000000 sec 1 PL 203000000 sec 76 PL 2002892510 W 76 PL 200300000 sec 76 PL -200800000 sec 76 PL -200308 MHz SFOO 100.622502510 W 77 FL1 -20048 76 PLW 62592510 W 77 SFOO 400.1316005 MHz 78 SFOO 400.1316005 MHz <td

4 A.E



Figure 12 <sup>13</sup>C NMR, Expand spectrum of (table 1, 5g)



Figure 13 <sup>1</sup>H NMR, spectrum of (table 1, 5h)



1Nemati-Firouzeh 1H 4

= CHANNEL f1 ====== 1H 13.50 usec 0.00 dB 11.3034873 W 400.1328009 MHz 32768 EM 0.30 Hz 0.30 Hz 0.100





Figure 15 <sup>1</sup>H NMR, spectrum of (table 1, 5i)



Figure 16 <sup>1</sup>H NMR, Expand spectrum of (table 1, 5i)



Figure 17 <sup>13</sup>C NMR, spectrum of (table 1, 5i)



2 A.E

Figure 18 <sup>13</sup>C NMR, Expand spectrum of (table 1, 5i)



Figure 19 <sup>H</sup> NMR, spectrum of (table 1, 5r)



Figure 20 <sup>1</sup>H NMR, spectrum of (table 1, 6c)



| 5 A.E                                                                                                                                                                        |                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME<br>EXPNO<br>PROCNO<br>Date_<br>Time<br>INSTRUM<br>PROBUPRO<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>SOLVENT<br>NS<br>SWH<br>RG<br>RG<br>DW<br>DE<br>TE<br>TE<br>D1<br>TD0 | Nemati-Firouzeh 1H<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                              |
| NUC1<br>P1<br>PL1<br>PL1W<br>SF01<br>SI<br>SF 4<br>WDW<br>SSB<br>LB<br>GB<br>PC                                                                                              | CHANNEL f1 ======<br>1H<br>13.50 usec<br>0.00 d873 W<br>11.30348873 W<br>400.1328009 MHz<br>20.780<br>00.130000 MHz<br>0<br>0.30 Hz<br>0<br>1.00 |

Figure 21 <sup>1</sup>H NMR, Expand spectrum of (table 1, 6c)



Figure 22 H NMR, spectrum of (table 1, 6i)







Figure 24 <sup>1</sup>H NMR, spectrum of (table 1, 6m)



Figure 25 <sup>1</sup>H NMR, spectrum of (table 2, 8e)



Figure 26 <sup>1</sup>H NMR, Expand spectrum of (table 2, 8e)



Figure 27 <sup>13</sup>C NMR, spectrum of (table 2, 8e)



Figure 28 <sup>1</sup>H NMR, spectrum of (table 2, 8f)



Figure 29 <sup>13</sup>C NMR, spectrum of (table 2, 8f)



Figure 30 <sup>1</sup>H NMR spectrum of (table 2, 8i)



Figure 31 <sup>1</sup>H NMR spectrum of (table 3, 9a)





Figure 33 <sup>1</sup>H NMR spectrum of compound (table 3, 9b)



Figure 34 <sup>13</sup>C NMR spectrum of (table 3, 9b)



Figure 35 <sup>1</sup>H NMR spectrum of (table 3, 9c)



Figure 36 <sup>13</sup>C NMR spectrum of (table 3, 9c)



Figure 37 <sup>1</sup>H NMR spectrum of (table 3, 9g)







Figure 39 <sup>1</sup>H NMR spectrum of (table 3, 9j)



Figure 40 <sup>13</sup>C NMR spectrum of (table 3, 9j)



Figure 41 <sup>1</sup>H NMR spectrum of (table 3, 9k)



Figure 42 <sup>1</sup>H NMR expand spectrum of (table 3, 9k)



Figure 43 <sup>13</sup>C NMR spectrum of (table 3, 9k)



Figure 44 <sup>1</sup>H NMR spectrum of (table 3, 9l)



Figure 45 <sup>1</sup>H NMR spectrum of (table 3, 9m)



Figure 46 <sup>13</sup>C NMR spectrum of (table 3, 9m)

4. References

1. M. Tajbakhsh, M. Farhang, M. Baghbanian, R. Hosseinzadeh and M. Tajbakhsh, *New J. Chem.*, 2015, **39**, 1827.

G. A. Meshrama, S. S. Deshpandea, P. A. Wagha and V. A. Vala, *Tetrahedron Lett.*, 2014,
4, 101.

3. A. Khalafi-Nezhad and S. Mohammadi, RSC Adv., 2013, 3, 4362.

4. A. I. Azath, P. Suresh and K. Pitchumani, New J. Chem., 2012, 36, 2334.

5. V. Rama, K. Kanagaraj and K. Pitchumani J. Org. Chem., 2011, 76, 9090.

6. M. Esmaeilpour, J. Javidi, F. Nowroozi Dodeji and M. Mokhtari Abarghoui, *J. Mol. Catal. A: chem.*, 2014, **393**, 18.