Electronic Supporting information

Synthesis and Self-assembly of ABC linear triblock copolymers to target CO2responsive multicompartment micelles

Hanblin Liu,[†] Zanru Guo,[†] Shuai He,[†] Hongyao Yin,[†] Yujun Feng*,^{†,‡}

[†]Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
[‡]Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China

1. Determination of molecular weight by UV spectroscopy

Figure S1. Linear relationship of absorbance and concentration of terthioester end group.

The π - π transition of the z-group in the RAFT chain transfer agent has significant UV absorption, so the molar quantity of polymers in solution can be detected from UV signal. Then for a given polymer weight in solution, the number average molecular weight \overline{M}_n can be calculated accordingly.¹ The experiment details are described as follows.

A series of CH₂Cl₂ solution of CTA was prepared and collect their absorbance with UV-vis spectrophotometer (UV-480, Unico, China). Thereafter, the relationship of absorbance and concentration of terthioester end group can be constructed with the concentration of chain transfer agent (λ =292 nm, CH₂Cl₂ as solvent) as shown in **Figure S1**. An equation was targeted as y=27629x (R²=0.9981). According to Beer's low, A= ϵ bc, in which ϵ is molar

absorption index, b is weight of cuvette (1 cm here), c is the concentration (mol·L⁻¹). Here the ϵ =27629 [X]. If we take m_i (mg) polymer and dissolve it into V_i (mL) solvent, and then determine the constant A, the \overline{M}_n can be calculated as following equation.

$$\overline{M_n} = \frac{m_i \times 10^{-3}}{\frac{A}{27629} \times V_i \times 10^{-3}} \text{ (g/mol)}$$
(1)

2. Additional TEM images of partial triblock copolymers

Before CO₂ bubbling

 $O_{113}F_{57} E_{114}$

 $O_{113}F_{57} \to I_{121}$

 $O_{113}F_{57} \to E_{201}$

After CO₂ bubbling

Before CO₂ bubbling

After CO₂ bubbling

Figure S2. TEM images of triblock copolymers self-assemblies in aqueous solution before (left) and after (right) bubbling CO_2 .

3. Additional TEM images of $O_{113}F_{110}E_{192}$ under the stimulation of CO_2

Figure S3. Additional TEM images of $O_{113}F_{110}E_{192}$ under the stimulation of CO_2

References

1. J. N. Marsat, M. Heydenreich, E. Kleinpeter, H. V. Berlepsch, C. Bottcher and A. Laschewsky, *Macromolecules*, 2011, 44, 2092-2105.