N-doped carbon dot with surface dominant non-linear optical property

(Supporting Information)

Liang Bai,^{a§} Shi Qiao,^{a§} Hao Li,^a Yu Fang,^b Yanmei Yang,^a Hui Huang,^a Yang Liu,^{*a} Yinglin Song,^{*b} and Zhenhui Kang^{*a}

Figure S2. The particle sizes histogram of N-CDs.

Figure S3. Energy dispersive x-ray spectroscopy analysis with element relative content of N-CDs in the inset.

Figure S4. Close aperture (A and C) and open aperture (B and D) Z-scans of water measured under 532 nm, 4 ns (A and B) and 21 ps (C and D) laser excitation.

Figure S5. The particle sizes histogram of RN-CDs.

The Z-scan is a simple and popular experimental technique to measure the intensity dependent third-order nonlinear susceptibility of the materials. It allows the simultaneous measurement of both the nonlinear refractive index γ and the nonlinear absorption coefficient β . From these parameters, the real and the imaginary components of the third-order nonlinear susceptibility $\chi^{(3)}$ can be calculated using the following relations ²⁶:

$$T(Z) = \frac{\alpha_0}{\sqrt{\pi}\beta I_i(Z)(1 - e^{-\alpha_0 L})} \int_{-\infty}^{\infty} ln \left[1 + \beta I_i(Z) \frac{1 - e^{-\alpha_0 L}}{\alpha_0} e^{-\tau^2} \right] d\tau$$
(1)
$$\gamma = \frac{\Delta T_{p - v} \lambda}{0.812\pi I_0 (1 - S)^{0.25} L_{eff}}$$
(2)

$$\chi_{Re}^{(3)}(esu) = \frac{cn_0^2\gamma}{120\pi^2}$$
(3)
$$\chi_{Im}^{(3)}(esu) = \frac{n_0^2c^2\beta}{240\pi^2\omega}$$
(4)
$$\chi^{(3)} = \left[\left(\chi_{Im}^{(3)} \right)^2 + \left(\chi_{Re}^{(3)} \right)^2 \right]^{\frac{1}{2}}$$
(5)

where L_{eff} is the effective sample thickness, α_0 is the linear absorption coefficient at the excitation wavelength λ , L is the sample length, I₀ is the laser peak irradiance on the focal plane, z_0 is the Rayleigh length, z is the position of the sample, ΔT_{p-v} is the difference between the peak and the valley of the normalized transmittance, and S is the linear transmittance of the aperture, defined as $S = 1 - \exp(-2r_a^2/w_a^2)$, with r_a being the radius of the aperture and w_a being the beam radius at the aperture.

Table S1. The third-order nonlinear optical parameters of different kinds of CDs under 532 nm laser excitation.

Sample	Laser	γ (10 ⁻¹⁷ m ² ·W ⁻¹)	β (10 ⁻¹¹ m·W ⁻¹)	$\chi^{(3)}$ (10 ⁻¹² esu)	$\chi^{(3)}/C^{a}$ (10 ⁻¹² esu·L·g ⁻¹)	References
N-CDs	4 ns	2.73	12.7	12.5	19.8	This work
N-CDs	21ps	-0.161	0.196	0.725	1.15	This work
B-CDs ^b	4 ns	-0.4	5.1	0.50	0.86	29
B-CDs	35 ps	-0.0034	-	0.0029	0.005	29
CDs ^c	35 ps	-0.043	-	0.048	0.026	30

^{a)}C: sample concentration; ^{b)}B-CDs: boron doped carbon dots; ^{c)}CDs: amorphous carbon dots.