Supporting Information for

In-situ Formation of Benzoxazines in Polyoxymethylene: A Simple Approach for Retarding Formaldehyde Generation and Tuning Mechanical Properties under Semi-interpenetrating Network

Nantinee Mantaranon,^a Masaya Kotaki,^{c,d} Chwee Teck Lim^e and Suwabun Chirachanchai^{a,b,*}

 ^a The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
 ^b Center for Petroleum, Petrochemical, and Advanced Materials, Chulalongkorn University, Bangkok, Thailand
 ^c Kaneka US Material Research, Kaneka Americas Holding, Inc., 800 Raymond Stotzer
 Pkwy, College Station, Texas 77843, USA

^d Center for Fiber and Textile Science, Kyoto Insititue of Technology, Sakyoku, Kyoto 606-8585, Japan

^e Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, 7 Engineering Drive 1, 117574, Singapore

(*) To whom correspondence should be addressed; Tel: +66-2-218-4134; Fax: +66-2-218-4134; 4134;

E-mail: csuwabun@chula.ac.th

Sample	Bisphenol-A (mol) ^a	Aniline (mol) ^a	Weight loss of TGA at 450 °C-600 °C (wt%)	BA-a (mol) ^b	Char yield at 600 °C (wt%)	Poly(BA-a) (mol) ^b	Utilized HCHO (mol)
POM-BA01a02	0.023	0.046	5	0.008	6	0.008	0.064
	(5.25 g)	(4.28 g)					
POM-BA02a04	0.046	0.092	8	0.012	10	0.013	0.10
	(10.50 g)	(8.56 g)					
POM-BA03a06	0.069	0.138	10	0.015	13	0.017	0.13
	(15.75 g)	(12.85 g)					
POM-BA05a10	0.11	0.22	12	0.018	15	0.020	0.15
	(26.25 g)	(20.48 g)					
POM-BA07a14	0.16	0.32	15	0.023	18	0.024	0.19
	(36.52 g)	(29.80 g)					
POM-BA10a20	0.23	0.46	17	0.025	18	0.024	0.20
	(52.50 g)	(42.83 g)					
POM-F04BA01a02	0.023	0.046	3	0.005	6.8	0.002	0.028
+0.028 mol of CH ₂ O	(5.25 g)	(4.28 g)					

Table S1 Conditions to prepare in-situ reactive blend of BA-a in POM together with weight loss, char yield and utilized formaldehyde

^a Based on mixing with POM (70 g, 2.33 mol of formaldehyde), which generated formaldehyde 1 wt% (0.0233 mol) under 200 °C for 2 h by TGA.

 $^{\rm b}\,M_{\rm w}$ of BA-a: 462.38 g.mol⁻¹ and $M_{\rm w}$ of pol(BA-a) repeating unit: 522.72 g.mol⁻¹

Fig. S1 TGA thermogram of pristine POM in isothermal process at 200 °C.

Fig. S2 FTIR spectrum of the precipitates obtained from POM-BA01a02.

Fig. S3 Integration ratio of C-O-C (1233 cm⁻¹) over those of the CH stretching (2965 cm⁻¹)
(•) and poly (BA-a) content (•) as a function of bisphenol-A content.

Sample	FEA (ppm)
РОМ	105.3
Direct mixing	
POM (0.33 mol) +Bisphenol-A (0.0033 mol) + aniline (0.0066 mol)	55.3
POM (0.33 mol) +Bisphenol-A (0.0067 mol) + aniline (0.0134 mol)	33.8
POM (0.33 mol) +Bisphenol-A (0.01 mol) + aniline (0.02 mol)	21
POM (0.33 mol) +Bisphenol-A (0.017 mol) + aniline (0.033 mol)	N/A
POM (0.33 mol) +Bisphenol-A (0.023 mol) + aniline (0.046 mol)	N/A
POM (0.33 mol) +Bisphenol-A (0.033 mol) + aniline (0.066 mol)	N/A
Thermally treaded POM	815.13
POM-BA01a02	N/A
POM-BA02a04	N/A
POM-BA03a06	N/A
POM-BA05a10	N/A
POM-BA07a14	N/A
POM-BA10a20	N/A

 Table S2 Formaldehyde emission amount (FEA)

Mixing in test tube: POM was mixed with bisphenol-A and aniline in the test tube and allowed melting at 200 °C for 2 h. The FEA was collected accordingly.

Fig. S4 TGA thermograms of (A) pristine POM, (B) thermally treaded POM, (C) POM-BA01a02, (D) POM-BA07a14, (E) POM-BA10a20 and (F) Poly(BA-a).

Sample	M_w^{a}	M_n^{a}	PDI ^a
POM-BA01a02	1264	909	1.4
POM-BA02a04	1482	934	1.6
POM-BA03a06	1644	937	1.7
POM-BA05a10	1845	922	2.0
POM-BA07a14	3153	1015	3.1
POM-BA10a20	4616	1195	3.8

Table S3 Weight-averaged molecular weight (M_w) , number-averaged molecular weight (M_n) and polydispersity index (PDI) of poly(BA-a) extracted by CHCl₃ from POM-BA-a blends.

^a Weight-averaged molecular weight (M_w), number-averaged molecular weight (M_n), and polydispersity index (PDI)determined by SEC calibrated with polystyrene standard corrected by multiplying with 0.58

Fig. S5 SEM micrographs of (a) pristine POM, (b) POM-BA03a06, (c) POM-BA07a14 and (d) POM-BA10a20.

Fig. S6 Circular average SAXS profiles and 2D-SAXS patterns of (a) pristine POM, (b) thermally treated POM, (c) POM-BA01a02, (d) POM-BA02a04, (e) POM-BA03a06, (f) POM-BA05a10, (g) POM-BA07a14 and (h) POM-BA10a20.