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Table S1 The calculated Mulliken atomic charges (e) of MDP and the relevant intermediate via 

DFT-B3LYP/6-311G(d,p).

C4
C3

N6
N5

C2

C10

C1

Species C1 C2 C3 C4 N5 N6 C10

MDP 0.277 0.290 0.367 -0.342 -0.326 -0.421 -0.286

A1`-IM1 0.343 0.360 0.390 -0.319 -0.453 -0.412 -0.263

A1-IM1 0.302 0.320 0.366 -0.336 -0.390 -0.422 -0.292

A-IM3 0.355 0.428 0.357 -0.333 -0.473 -0.464 -0.322

The Mulliken atomic charges of MDP were calculated via the B3LYP/6-311G(d,p) method. The 

results are shown in Table S1. As is listed in Table S1, the negative charge centers, which may be 

potentially attacked by NO2
+ in MDP, should be C4 (C in methylene group), C10 (C in methyl 

group), N5 and N6. It is clearly shown in our recent work that the C-nitration is much more 

favorable than N-nitration in the reaction of TO with NO2
+ in the presence of acidic group of HSO4

-

/NO3
- (RSC Adv., 2015, 5, 25183). Such calculation result has also been experimentally verified in 

view that the preponderant products in the nitration systems (such as NO2
+ with TO (Explos., 

Pyrotech., 2005, 30, 298) and NO2
+ with MDP (J. Org. Chem., 2004, 69, 4369; Acta Chim. Sinica, 

2004, 62, 295; Org. Process Res. Dev., 2012, 16, 1711)) are found to be exactly relevant to the C-

nitration results. Therefore, only the attacking of methylene C4 and methyl C10 in MDP by the 

nitration reagent of NO2
+ are discussed in the present work.
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Fig. S1 Schematic energy diagram of the direct nitration of MDP with NO2
+ obtained via B3LYP-

D3/6-311++G(3df,3pd)//B3LYP/6-311G(d,p).
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Fig. S2 Schematic energy diagram of the HSO4
--induced nitration of MDP with NO2

+ obtained via 

B3LYP-D3/6-311++G(3df,3pd)//B3LYP/6-311G(d,p).
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Fig. S3 Schematic energy diagram of the direct H-transfer of MDP obtained via B3LYP-D3/6-

311++G(3df,3pd)//B3LYP/6-311G(d,p).
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Fig. S4 Schematic energy diagram of the direct H-transfer of mono-nitro substitution product 

obtained via B3LYP-D3/6-311++G(3df,3pd)//B3LYP/6-311G(d,p).
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Fig. S5 Schematic energy diagram of the direct H-transfer of di-nitro substitution product obtained 

via B3LYP-D3/6-311++G(3df,3pd)//B3LYP/6-311G(d,p).
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Fig. S6 Schematic energy diagram of the trans-HSO4
--induced nitration in the second nitration step 

in path C obtained via B3LYP-D3/6-311++G(3df,3pd)//B3LYP/6-311G(d,p).

During the second nitration step, a cis-transition state, namely Cb-TS2 (Figure 5) and a trans-

transition state, namely Cb1-TS2 (Figure S6) are obtained, which are associated with two 

configurations that HSO4
--induced. It is seen that in the NO2

+ attacking step ① in path C, the cis-

HSO4
--induced nitration (Figure 1, Cb-IM3→Cb-IM4, ∆G≠ = 7.9 kcal.mol-1) is more favorable than 

the trans-HSO4
--induced one (as shown in Figure S6, ∆G≠ = 18.9 kcal.mol-1). Such calculation is in 

accordance with the results reported by Zhang et al (Chem. Eur. J., 2014, 20, 1),
 in which it was 

reported that cis-configuration is more stable than trans-configuration for double C60 adducts.
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Table S2 The Hirshfeld atomic charge of the atoms and the Coulomb attraction between the atoms 

of the pre-intermediates in the step ③ in paths A-C.

Q/e a r/m b F/N c
Methods Species

C4 N16 O8

　

C4-N16 O8-N16

　

C4-N16 O8-N16

Hirshfeld A-IM13 -0.054 0.313 -0.128 3.325×10-10 1.594×10-10 3.531×10-11 3.642×10-9

B-IM15 -0.066 0.309 -0.107 3.477×10-10 1.498×10-10 3.896×10-11 3.403×10-9

Ca-IM5 -0.057 0.311 -0.107 3.475×10-11 1.507×10-10 3.391×10-11 3.384×10-9

a. Q, the atomic charge of the pre-intermediates in the step ③ in paths A to C for the nitration of MDP with NO2
+ 

calculated via B3LYP/6-311G(d,p). To calculate the Coulomb force, the charge unit of e should be transformed to 

Coulomb (C) with a relationship as: 1 e=1.602×10-19 C; b. r, the distance between atoms C4 and N16 or atoms O8 

and N16 is calculated via B3LYP/6-311G(d,p); c. F, the Coulomb attraction between atoms C4 and N16 or atoms 

O8 and N16 is calculated by Coulomb’s law (F=-kQ1.Q2/r2), where the constant k is 9.0×109 Nm2/C2 if other 

variables take their standard international units.



Table S3 The f and ∆f of the atoms of the pre-intermediates in the step ③ in paths A to C 

(calculated from the Hirshfeld charge).a

Species Atoms N N+1 N-1 f+(r) f-(r) ∆f(r)
A-IM13 C4 -0.054 -0.15 0.101 0.096 0.165 -0.069

N16 0.313 0.242 0.329 0.071 0.016 0.055
O8 -0.128 -0.188 -0.116 0.06 0.012 0.048

B-IM15 C4 -0.066 -0.159 0.071 0.093 0.137 -0.044
N16 0.309 0.222 0.329 0.087 0.020 0.067
O8 -0.107 -0.154 -0.077 0.047 0.030 0.017

Ca-IM5 C4 -0.057 -0.124 0.072 0.067 0.129 -0.062
N16 0.311 0.252 0.330 0.059 0.019 0.040
O8 -0.107 -0.139 -0.078 0.032 0.029 0.003

a. Hirshfeld charge in their N, N+1 and N-1 electrons states for the corresponding atoms in the step ③ in paths A 

to C is calculated and listed in columns 3 to 5. The condensed f- and f+ and ∆f is calculated and listed in columns 6 

to 8.

According to the calculation method (J. Chem. Theory Comput. 2010, 6, 1470; Computers & 

Chemistry, 2012, 33, 580), the f referred to the difference of atomic charges in two states. f and ∆f 

can be expressed and calculated as

f+(r) = qN - qN+1                    (1)

f-(r) = qN-1 - qN                     (2)

∆f(r) = f+(r) - f-(r)                   (3)
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Fig. S7 Optimized geometries of species for the rate-limiting step in paths A-C calculated via 

B3LYP/6-311G(d,p) (bond lengths are in angstrom). For the bond lengths of specicies, no-bracket, 

bracket and square brackets respect gas, formamide and DMSO phases, respectively.



Table S4 Free energies (G, Hartree) and active free energies (∆G≠, kcal mol-1) for the nitration of 

MDP with NO2
+ in the gas (g) and formamide (f) and dimethylsulfoxide (d) phases.a

System G(g) ∆G≠(g) G(f) ∆G≠(f) G(d) ∆G≠(d)

A-IM13 -1067.868880 -1067.892100 -1067.892111

A-TS7 -1067.833941 -1067.858344 -1067.858129

A-IM14 -1067.910558 -1067.934647 -1067.934649

A-IM13→A-IM14 21.9 21.2 21.3

B-IM5 -658.7420287 -658.7569809 -658.7567593

A-TS7 -658.6957357 -658.7123957 -658.7121419

B-IM6 -658.7711167 -658.7960904 -658.7956936

B-IM5→B-IM6 29.1 27.9 28.0

Ca-IM5 -863.3096296 -863.3276008 -863.3715784

A-TS7 -863.2636412 -863.2834389 -863.3273402

Ca-IM6 -863.3395476 -863.3639724 -863.2831436

Ca-IM5→Ca-IM6 28.9 27.7 27.8

a ZPG was obtained via DFT at the B3LYP/6-311G(d,p) level. The energy value (∆G) was obtained via DFT at 

the B3LYP-D3/6-311++G(3df,3pd)//B3LYP/6-311G(d,p) level.


