Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

Applying thieno[3,2-b]thiophene as a building block in the design of rigid extended thienoacenes.

François Magnan^{a,b}, Bulat Gabidullin^a and Jaclyn L. Brusso^{*,a,b}

^aDepartment of Chemistry and ^bCentre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ottawa, Ontario K1N 6N5, Canada.

Contents (22 pages)

- Page S2 Differential Pulse Voltammogram of 7
- Page S3 Molecular orbitals
- Page S4 Energy levels diagram
- Page S4 Internal reorganization energies
- Page S5 Alpha/beta axis diagram
- Page S6 Solution absorption measurements
- Page S7 TD DFT vertical excitation energies
- Page S9 XRD measurements
- Page S10 NMR spectra
- Page S19 DFT calculations archival files
- Page S22 References

Figure S1. Differential pulse voltammetry (DPV) scan of 7.

Figure S2. Frontier molecular orbitals and their corresponding energies (eV) for 5, 6, 7 and 8.

Figure S3. Energy level diagrams for the frontier molecular orbitals of 5, 6, 7 and 8.

Table S1 – DFT-calculated internal reorganization energy for oxidation (hole transfer, λ_{hole}) and reduction (electron transfer, $\lambda_{electron}$) processes.

	$\lambda_{ m hole} \ (eV)$	$\lambda_{electron}$ (eV)
1	0.122	0.109
2	0.132	0.125
3	0.148	0.108
4	0.100	0.078
5	0.113	0.125
6	0.114	0.138
7	0.202	0.203
8	0.179	0.172

Figure S4. Schematic representation of the alpha and beta axes in 7 and 8.

	5		6		7		8
λ	3	λ	3	λ	3	λ	3
(nm)	$(M^{-1}cm^{-1})$	(nm)	$(M^{-1}cm^{-1})$	(nm)	$(M^{-1}cm^{-1})$	(nm)	$(M^{-1}cm^{-1})$
341	57712	354	94162	296	39349	325	71705
358	114394	372	178201	308	34555	340	50598
377	253227	464	19918	352	25100	375	37404
405	19292	496	34997	369	43649	396	76133
430	17909			390	47195	421	85755
440	18466						
471	18899						

 Table S2. Molar extinction coefficients of 5, 6, 7 and 8.

Figure S5. Normalized absorption spectra for 1, 3 and 5. Data for 1 and 3 was taken from Robertson et al.¹; these spectra were recorded in DCM and are provided here for comparison purposes.

Figure S6. Normalized absorption spectra for 2,4 and 6. Data for 2 and 4 was taken from Robertson et al.¹; these spectra were recorded in DCM and are provided here for comparison purposes.

E(eV)	f
2.8814	
	1.3623
3.1553	0.1426
3.2788	0.0001
3.4304	0.0008
3.5655	0.0010
3.5955	0.5281
3.6169	0.0000
3.7884	0.0003
3.8317	0.0345
3.8567	0.9390
3.9167	0.0000
3.9582	0.1569
3.9836	0.0001
4.0215	0.0000
4.0804	0.0008
4.1464	0.2407
4.1523	0.0000
4.1794	0.0035
4.2188	0.0000
4.2545	0.0228
	2.8814 3.1553 3.2788 3.4304 3.5655 3.5955 3.6169 3.7884 3.8317 3.8567 3.9167 3.9582 3.9836 4.0215 4.0804 4.1464 4.1523 4.1794 4.2188 4.2545

Table S3. TD DFT optical transitions^a for 5, 6, 7 and 8.

^a TDDFT/B3LYP/6-311+G(2d,p) level of theory on geometry optimized structures (where R = Me for all structures) where k = order of excitation energy and f = oscillator strength.

Compound	Calculated λ (nm)	Transition	Oscillator Strength (f)
	390	HOMO-1→LUMO HOMO →LUMO+1	2.1559
5	359	HOMO-4→LUMO HOMO-1→LUMO+1	0.4282
	465	HOMO-1→LUMO HOMO →LUMO+1	0.3982
	365	HOMO-4→LUMO HOMO-1→LUMO+1	0.1994
6	379	HOMO-1→LUMO HOMO →LUMO+1	1.7656
	495	HOMO-1→LUMO HOMO →LUMO+1	0.6708
	366	HOMO-4→LUMO HOMO-1→LUMO+1	0.5855
	329	HOMO-6→LUMO	0.1446
	393	HOMO →LUMO	1.0053
	292	HOMO-1→LUMO+2	0.5398
7	276	HOMO-2→LUMO+1	0.3821
	315	HOMO-1→LUMO HOMO →LUMO+2	0.3250
	430	HOMO →LUMO	1.3623
	321	HOMO-2→LUMO+1 HOMO-1→LUMO+2	0.9390
8	345	HOMO-1→LUMO HOMO →LUMO+2	0.5281
	299	HOMO-4→LUMO HOMO-3→LUMO+1	0.2407

Table S4. Selected TD DFT transitions for 5, 6, 7 and 8 (PhCl solvent cavity, where R = Me for all structures).

	6
Formula	C53H57N84
fw	964.48
Crystem System	Triclinic
Space Group	P-1
a (Å)	4.6484(2)
b (Å)	13.9788(7)
c (Å)	19.2908(9)
α (°)	105.132(2)
β (°)	90.170(3)
γ (°)	98.420(3)
$V(Å^3)$	1195.88(10)
Z	1
D_{calc} (Mg·m ⁻³)	1.339
T(K)	200
$u (\mathrm{mm}^{-1})$	0.411
$2\Theta_{\max}$ (°)	56.924
No. of total reflections	6037
No. of unique reflections	4764
R _{int}	0.0519
R_1 , wR_2 (on F^2)	0.0725,
	0.1330
$\delta^{a}({ m \AA})$	3.4811
$ au^b$ (°)	49.777

Table S5- Crystallographic data for 6.

 ${}^{a}\delta$ is the mean interplanar separation between molecular planes along the π stack. ${}^{b}\tau$ is the tilt angle between the mean molecular plane and the stacking axis.

Figure 7 – ¹HNMR spectrum of 5

Figure 8 - ¹HNMR spectrum of 6

Figure 9 - ¹HNMR spectrum of 7

Figure 10 – ¹³CNMR spectrum of 7

Figure 11 - ¹HNMR spectrum of 8

Figure 12 - ¹HNMR spectrum of 9

Figure 13 - ¹³CNMR spectrum of 9

Figure 14 - ¹HNMR spectrum of 10

Figure 15 - ¹³CNMR spectrum of 10

Figure 16 - ¹HNMR spectrum of 11

Figure 17 - ¹³CNMR spectrum of 11

Figure 18 - - ¹HNMR spectrum of 13

Figure 19 - ¹³CNMR spectrum of 13

Figure 20 - - ¹HNMR spectrum of 14

Figure 21 - ¹³CNMR spectrum of 14

Figure 22 - - ¹HNMR spectrum of 16

Figure 23 - ¹³CNMR spectrum of 16

Figure 24 - - ¹HNMR spectrum of 17

Figure 25 - ¹³CNMR spectrum of 17

Density Functional Theory Calculations and Archival Files

Molecular geometry optimizations were performed on **5**, **6**, **7** and **8** (where R = Me in all cases) at the DFT (B3LYP) level of theory with the 6-311+G(2d,p) basis set, using the Gaussian 09W program package.² All geometries were optimized without symmetry constraints.

Archive file (geometry optimization) for 5 (where R = Me)

```
1\1\GINC-TITAN\FOpt\RB3LYP\6-311+G(2d,p)\C34H18S8\APACHE\01-Dec-2015\0
 \\#N B3LYP/6-311+G(2d,p) OPT Geom=Connectivity\\T(HTT)A 2\\0,1\C,-0.00
 0344561,-0.0003590987,0.0235035976\C,-0.0008976305,-0.0002633501,1.518
 9386311\C,1.0702392569,-0.0002049999,2.3617507685\C,0.6771612949,-0.00
 01244851, 3.72426153\s, 1.5749177468, -0.0000003392, 5.2108512253\c, 0.0825
 034821,0.0000556405,6.135567503\C,0.054160166,0.000189149,7.5635460519
 \C,1.2032053877,0.000267518,8.3540241305\C,1.1501092545,0.0004110588,9
 .7477031722\C,-0.1315882708,0.0004872812,10.390823274\C,-1.2806335209,
 0.0004029219,9.6003451994\C,-1.2275374254,0.0002524794,8.2066661563\C,
 -2.3892850404,0.0001488765,7.3758420807\$,-4.0226892693,0.0001803669,8
 .019574303\C,-4.6778665614,-0.0000132099,6.4112652059\C,-3.6858803693,
 -0.0000943292,5.4465739932\C,-2.3512133558,0.0000009905,5.9771128488\C
 ,-1.0616098909,-0.0000269565,5.3300258271\C,-0.6891695382,-0.000123341
 2,3.9429081537\s,-1.5154238563,-0.0002115997,2.4027659724\s,-4.4267300
 068,-0.0003531124,3.863578021\C,-6.0405710946,-0.0003327065,4.54947861
 72\C,-6.0051423276,-0.0001453962,5.9119802076\H,-6.8949114469,-0.00011
 02944,6.5269157046\C,-7.2397859848,-0.0004472589,3.6560527925\H,-8.148
 8969334, -0.0009176854, 4.2593211817\H, -7.2657739586, 0.8815871848, 3.0105
 324305\H,-7.2652149891,-0.8820992137,3.0099944502\H,-2.2494221606,0.00
 04562477,10.086456321\C,-0.1599316853,0.0006531932,11.8188018332\S,-1.
 6523459391,0.0007820102,12.7435181622\C,-0.7545893267,0.000960175,14.2
 301077623\C,0.6117413422,0.0009186329,14.0114613012\C,0.9841817396,0.0
 007372353,12.6243435074\C,2.2737851303,0.000630841,11.9772564876\C,2.3
 118568671,0.0004819275,10.5785272493\S,3.9452610982,0.0003700851,9.934
```

7949552\C,4.6004383867,0.0005141188,11.5431041352\C,3.6084521868,0.000 6417767,12.5077953289\s,4.3493016346,0.000762442,14.0907912819\C,5.963 1427761,0.0006394859,13.4048908358\c,5.9277141191,0.0005155734,12.0423 89243\H,6.8174832241,0.0004261869,11.4274537219\C,7.1623572325,0.00066 87703,14.2983172371\H,7.1880707161,0.882537519,14.9440712387\H,7.18805 98446,-0.8811490887,14.9441419766\H,8.0714686428,0.0006387716,13.69504 93695\s,1.4379955554,0.0011591507,15.5516035331\c,-0.0765313211,0.0012 992047,16.4354309532\C,-1.1476677226,0.0011723865,15.5926186012\H,-2.1 725019959,0.0012308984,15.9383778565\C,-0.0770824174,0.0014941498,17.9 30865915\H,-1.1041244989,0.0018285208,18.299105135\H,0.4250306881,-0.8 804394124,18.3375971708\H,0.4255256049,0.8832470611,18.3373719573\H,2. 1719940155,0.0002154655,7.8679129827\H,2.0950732196,-0.0002201451,2.01 59906578\H,-0.502738159,0.8814388225,-0.3831722614\H,1.0266981938,-0.0 003436565,-0.3447337724\H,-0.5026709166,-0.8822476582,-0.3830595243\\V ersion=EM64L-G09RevA.02\State=1-A\HF=-4492.6010348\RMSD=7.511e-09\RMSF =6.246e-06\Dipole=-0.0000006,0.0000045,0.\Quadrupole=10.3913784,-33.50 00436,23.1086652,0.0007865,8.528435,0.0057239\PG=C01 [X(C34H18S8)]\\@

Archive file (geometry optimization) for 6 (where R = Me)

1\1\GINC-TITAN\FOpt\RB3LYP\6-311+G(2d,p)\C33H17N1S8\APACHE\20-Dec-2015 \0\\#N B3LYP/6-311+G(2d,p) OPT Geom=Connectivity\\T(HTT)Ac 2\\0,1\C,-0 .0118483014,0.0009497064,0.017285326\C,-0.0083790013,0.0007529785,1.51 26416915\C,1.0656045048,0.0007646539,2.3518505248\C,0.6810064412,0.000 5683287,3.7173015647\s,1.5914327734,0.0004699324,5.1980311672\c,0.1020 553706,0.0002087608,6.1126207459\C,0.0912981297,0.0000082127,7.5356361 532\N,1.2499792965,0.0000432144,8.1988184844\C,1.2396534367,-0.0001642 384,9.5338253963\C,0.0264235599,-0.0004495054,10.2988313104\C,-1.17393 52434,-0.0004664325,9.5918366205\C,-1.1804821058,-0.0002322194,8.19876 03752\C,-2.3548992546,-0.0002192085,7.3885907625\C,-2.3338481146,-0.00 00033749,5.9883563511\C,-3.6744645385,-0.0000295072,5.4757022841\C,-4. 6551605161,-0.0002658364,6.4519191402\s,-3.9808584825,-0.0004633977,8. 053124608\C,-5.9877171984,-0.0002783615,5.9668938966\C,-6.0373175017,-0.0000382855,4.6045831292\s,-4.4308699023,0.0001797326,3.9010316477\c, -7.2459346665,0.000085189,3.7239262345\H,-7.2778758743,-0.8813662447,3 .0779862167\H,-8.1486729921,-0.0004879233,4.3365853837\H,-7.2783654166 ,0.8822056175,3.0789190801\H,-6.8710813203,-0.0004554984,6.5909987715\ C,-1.0531074699,0.0001998494,5.3228450368\C,-0.687905665,0.0004072682, 3.9364838328\S,-1.5214686062,0.0004925038,2.3998180642\H,-2.1141865395 ,-0.0006681928,10.1321966487\C,0.1351764797,-0.0007374255,11.721435612 3\C,1.3556149105,-0.0007286198,12.4081893658\C,1.1236349551,-0.0011672 373,13.8246108961\c,-0.213570006,-0.0014349142,14.1804851319\s,-1.2575 80393,-0.0012223568,12.7917509061\C,-0.4653677382,-0.0020056057,15.576 0338081\C,0.6867319758,-0.0021562566,16.3047413477\S,2.1033819516,-0.0 017703679,15.2709286379\C,0.8391757997,-0.002603028,17.7923814508\H,-0 .1446556087,-0.0030868324,18.2639360617\H,1.3809721235,-0.8843266074,1 8.1448533748\H,1.3803875676,0.8792459412,18.1454447079\H,-1.4493385815 ,-0.0022234974,16.0250774324\c,2.5754181052,-0.000291584,11.6366432071 \c,3.9571305766,-0.0000008056,12.0190569709\C,4.835683304,0.0003718984 ,10.9466266894\\$,4.0146433506,0.0004048389,9.4145269721\C,2.4745926526 ,-0.00007946,10.2409427473\c,6.2090937655,0.0007322254,11.301754889\c, 6.3934997994,0.0006668003,12.6522016271\s,4.8651967425,0.0001404401,13 .5129055845\C,7.6837812319,0.0010171347,13.4080300702\H,8.5209949282,0 .0010242692,12.7084911833\H,7.779952178,0.8829467945,14.0469727601\H,7 .7802426082,-0.8806364863,14.0473055008\H,7.027233805,0.0010313679,10. 5941760305\H,2.088861015,0.0009026331,2.0011837854\H,1.0140637223,0.00 08940496,-0.3539099945\H,-0.5156569899,-0.8807347549,-0.3878090018\H,- 0.515474458,0.8828485801,-0.3875732574\\Version=EM64L-G09RevA.02\State =1-A\HF=-4508.6512234\RMSD=9.206e-09\RMSF=2.821e-05\Dipole=-0.3488524, -0.0000271,0.200485\Quadrupole=10.7171785,-33.658734,22.9415556,0.0056 077,10.489833,-0.0096091\PG=C01 [X(C33H17N1S8)]\@

Archive file (geometry optimization) for 7 (where R = Me)

1\1\GINC-TITAN\FOpt\RB3LYP\6-311+G(2d,p)\C26H16S6\APACHE\28-Dec-2015\0 \\#N B3LYP/6-311+G(2d,p) OPT Geom=Connectivity\\T(HT)BTBT 2\\0,1\C,0.0 035184123,-0.0001596933,0.0190770651\C,0.0031858802,-0.0003507692,1.51 35331387\s,1.5227371643,-0.0002444721,2.3982267774\C,0.6831456826,-0.0 007176405,3.9322242047\c,1.2412085573,-0.000926294,5.2162454269\s,2.95 18930474,-0.0008508862,5.621847823\C,2.5646504304,-0.0013664291,7.3286 526523\C,1.2055800414,-0.0014954197,7.5458483021\C,0.4130555803,-0.001 2386109, 6.3586791384\C, -0.9848814946, -0.0013386833, 6.1655847734\C, -1.5 58040613,-0.001120844,4.8857657298\C,-2.9908514139,-0.0012824764,4.939 6089237\C,-3.4992657685,-0.0016280139,6.1976077074\S,-2.2211841527,-0. 001735909,7.4020553869\C,-4.9331721388,-0.0019007698,6.6201191337\H,-5 .1789334148,0.87928898,7.2188442172\H,-5.5786660124,-0.0018197085,5.74 05619517\H,-5.1786976301,-0.8833827302,7.2185109064\H,-3.6239042063,-0 .0011635211,4.0617985831\c,-0.7088175543,-0.0008004996,3.7462439774\c, -1.0600416446,-0.0005687621,2.3563809347\H,-2.0807855136,-0.0005977849 ,1.9968035388\s,0.8183354825,-0.0017263736,9.2526499632\C,2.5290187348 ,-0.0016910643,9.6582557937\C,3.3571740561,-0.0014647748,8.5158201805\ C,4.7551088125,-0.0014581421,8.7089245191\S,5.991411603,-0.0012162965, 7.4724493664\c,7.2694899278,-0.0013459784,8.6768892782\c,6.7610796211, -0.0016191521,9.9348930735\C,5.3282707397,-0.00165852,9.9887418118\C,4 .4790434071,-0.0018863496,11.1282605574\C,3.0870818103,-0.0019027028,1 0.9422767917\s,2.2474789041,-0.0021234888,12.4762671314\c,3.7670373465 ,-0.0023942155,13.3609744893\C,4.830261201,-0.0021432975,12.5181242886 \H,5.8510044286,-0.002205565,12.8777061579\C,3.7666974137,-0.002790983 1,14.85542215\H,4.7925749415,-0.0027816679,15.2265888898\H,3.261469792 5,0.8783279009,15.2603285447\H,3.2616528244,-0.8842294078,15.259865030 9\H,7.3941393252,-0.0017594849,10.8126981729\C,8.7034101054,-0.0011819 004,8.2544208166\H,9.3488668358,-0.001424416,9.1340042978\H,8.94909933 05,-0.8823333699,7.6556103407\H,8.9490538228,0.8803360711,7.656129168\ H,-1.0223625883,-0.0001901593,-0.3520765857\H,0.5085925369,0.881204098 6,-0.3854826352\H,0.5087134475,-0.8813577317,-0.3856990845\\Version=EM 64L-G09RevA.02\State=1-A\HF=-3390.0408823\RMSD=4.310e-09\RMSF=1.113e-0 4\Dipole=-0.0000118,-0.0000932,-0.0000036\Quadrupole=12.9444297,-24.70 2446,11.7580162,-0.0001509,15.3968136,-0.006134\PG=C01 [X(C26H16S6)]\\ Ø

Archive file (geometry optimization) for **8** (where R = Me)

1\1\GINC-TITAN\FOpt\RB3LYP\6-311+G(2d,p)\C34H16S10\APACHE\21-Dec-2015\
0\\#N B3LYP/6-311+G(2d,p) OPT Geom=Connectivity\\T(HTT)BTBT 2\\0,1\C,0
.0018968013,0.,0.0257152285\C,0.001308994,0.,1.5244772912\S,1.51446423
18,0.,2.4001172334\C,0.7016505196,0.,3.9430494297\C,1.0896104879,0.,5.
327867371\C,-0.069508379,0.,6.1387869652\C,0.0094696049,0.,7.532032629
7\C,1.2591562167,0.,8.1797006936\C,1.0849275989,0.,9.597272457\S,2.196
3747785,0.,10.9500427133\C,0.8470793796,0.,12.0766341958\C,-0.40248224
69,0.,11.4287818571\C,-0.2280358436,0.,10.0112786798\S,-1.3396069074,0
.,8.658659555\C,-1.5611657104,0.,12.2274865908\C,-1.5124024771,0.,13.6
396145827\C,-2.8510009317,0.,14.166754399\C,-3.8448034838,0.,13.203942
9044\S,-3.1967145854,0.,11.5878338024\C,-5.1705719604,0.,13.7028733937
\C,-5.2029347666,0.,15.0669074916\S,-3.5912159082,0.,15.7458306448\C,6.3976672584,0.,15.9721290978\H,-6.1045542185,0.,17.0226969669\H,-7.01

89304917,0.8831849643,15.8029500984\H,-7.0189304917,-0.8831849643,15.8 029500984\H,-6.0594667694,0.,13.0863839786\C,-0.2353237165,0.,14.27987 56042\C,0.1517433492,0.,15.6644907935\C,1.5178041053,0.,15.8779247423\ s,2.4221158018,0.,14.3877564476\c,0.9250194216,0.,13.4699496803\c,1.91 57671106,0.,17.2382287147\C,0.8474618448,0.,18.0857099028\S,-0.6687811 867,0.,17.2064089075\C,0.8532672858,0.,19.5811728576\H,1.8815107853,0. ,19.9459802031\H,0.352323187,0.8818456495,19.9894790155\H,0.352323187, -0.8818456495,19.9894790155\H,2.9418449415,0.,17.5802101405\C,2.417220 6487,0.,7.380118791\s,4.0532970617,0.,8.0171961503\c,4.6985418089,0.,6 .4004399716\C,3.7048476056,0.,5.4399484884\C,2.3669643584,0.,5.9676110 49\s,4.4396575533,0.,3.8553446813\C,6.0560841537,0.,4.534604429\C,6.02 45632931,0.,5.8972348913\H,6.9160982377,0.,6.5095579273\C,7.2521009096 ,0.,3.6366812807\H,8.1634888241,0.,4.2364556774\H,7.275417987,-0.88187 0007,2.990883819\H,7.275417987,0.881870007,2.990883819\S,-1.5683676943 ,0.,5.2231000826\C,-0.666372879,0.,3.73100148\C,-1.0676242131,0.,2.373 5083404\H,-2.0954277978,0.,2.0361147867\H,1.0163628823,0.,-0.374802802 3\H,-0.5081344769,-0.8831645474,-0.367408419\H,-0.5081344769,0.8831645 474,-0.367408419\\Version=EM64L-G09RevA.02\State=1-A'\HF=-5287.8248087 \RMSD=3.813e-09\RMSF=6.134e-06\Dipole=-0.0158151,0.,-0.0115344\Quadrup ole=5.6747217,-37.2430576,31.5683359,0.,-10.3389562,0.\PG=CS [SG(C34H8 S10),X(H8)]\\@

References

- 1. S. F. Robertson, A. A. Leitch, I. Korobkov, D. V. Soldatov and J. L. Brusso, *Can. J. Chem.*, 2014, **92**, 1106.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. G. Fox, Gaussian, Inc., Wallingford CT, 2009.