Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information

Photocatalytic WO₃/TiO₂ nanowires: WO₃ polymorphs influencing the ALD nucleation of TiO₂

Dávidné Nagy¹, Tamás Firkala², Eszter Drotár³, Ágnes Szegedi³, Krisztina László⁴, Imre Miklós Szilágyi^{2,5}

¹Institute for Materials and Processes, School of Engineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JL, United Kingdom

²Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., Budapest, H-1111, Hungary

³Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2., Budapest, H-1117, Hungary

⁴Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8., Budapest, H-1111, Hungary

⁵MTA-BME Technical Analytical Research Group of the Hungarian Academy of Sciences, Szent Gellért tér 4., Budapest, H-1111, Hungary

m/z	MS fragments	Evolved gases		
14	N ⁺	NH ₃		
15	NH ⁺	NH ₃		
16	O ⁺ , NH ₂ ⁺	O ₂ , NH ₃		
17	OH ⁻ , NH ₃ ⁺	H_2O, NH_3		
18	H_2O^+	H ₂ O		
19	HOD ⁺	HOD		
30	NO ⁺	NH ₃		
35	³⁵ Cl ⁺	HCl		
36	H ³⁵ Cl ⁺	HCl		
37	³⁷ Cl ⁺	HCl		
38	H ³⁷ Cl ⁺	HC1		
44	N ₂ O ⁺	NH ₃		
48	SO ⁺	SO ₂		
64	$\mathrm{SO_2}^+$	SO ₂		

Table S1. Fragments of gases evolved during the EGA-MS study of as-prepared, non-washed h-WO₃ NWs in air

Fig. S1. TG/DTG/DTA curves of as-prepared, non-washed h-WO₃ NWs in air

Fig. S2. Evolved gas analysis (EGA)-MS curves of as-prepared, non-washed h-WO₃ NWs in air

Fig. S3. TG/DTG/DTA curves of washed h-WO₃ NWs in air

Fig. S4. TG/DTG/DTA curves of washed h-WO3 NWs in air

Fig. S5. SEM-EDX results of as-prepared, non-washed h-WO₃ NWs

Fig. S6. SEM-EDX results of as-prepared, washed h-WO₃ NWs

Fig. S7. SEM-EDX results of as-prepared, washed $h-WO_3/TiO_2$ NWs

	Elemental distribution (wt. %)							
	W	0	Na	Ti	N	S	Cl	
non-washed h-WO ₃								
NWs	15.23	58.91	2.63	0	22.64	0.28	0.31	
washed h-WO ₃ NWs	23.67	73.51	2.82	0	0	0	0	
h-WO ₃ /TiO ₂ NWs	22.45	72.54	2.37	2.64	0	0	0	

Table S2. Summarizing EDX results for selected nanostructures

Fig. S9. TG/DTG/DTA curves of h-WO₃/TiO₂ NWs in air