Electronic Supplementary Information for

Catalytic performance of layered double hydroxide nanosheets toward phenol hydroxylation

Guoqing Cui, Fei Wang, Shan He* and Min Wei*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, Beijing 100029, P. R. China

* To whom correspondence should be addressed.

Tel.: +8610-64412131; fax: +8610-64425385.

E-mail: vh30@163.com (Shan He); weimin@mail.buct.edu (Min Wei).

Figure S1. FT-IR spectra of CuMgAl-LDH@mSiO₂ before (a) and after (b) refluxing in acetone.

Figure S2. A representative GC profile of the product mixture. From left to right: p-benzoquinone, phenol, catechol and hydroquinone.

The conversion of phenol was calculated by using the following equation:

$$X_{ph} = \frac{n_2 + n_3 + n_4}{n_1 + n_2 + n_3 + n_4} \times 100\%$$
(1)

Where n_1 , n_2 , n_3 , n_4 are the molar amount of phenol, catechol, hydroquinone and pbenzoquinone, respectively.

Figure S3. (A) SEM image of U-CuMgAl(CO₃)-LDH; (B) particle size distribution of U-CuMgAl(CO₃)-LDH based on SEM image; (C) particle thickness distribution of U-CuMgAl(CO₃)-LDH based on SEM image.

Figure S4. (A) SEM image of U-CuMgAl(NO₃)-LDH; (B) particle size distribution of U-CuMgAl(NO₃)-LDH based on SEM image; (C) particle thickness distribution of U-CuMgAl(NO₃)-LDH based on SEM image.

Figure S5. (A) SEM image of CuMgAl-LDH@mSiO₂; (B) particle thickness distribution of CuMgAl-LDH@mSiO₂ based on SEM image.

Figure S6. (A) SEM image of S-CuMgAl-LDH-80; (B) particle size distribution of S-CuMgAl-LDH-80 based on SEM image; (C) particle thickness distribution of S-CuMgAl-LDH-80 based on SEM image.

Figure S7. (A) SEM image of S-CuMgAl-LDH-100; (B) particle size distribution of S-CuMgAl-LDH-100 based on SEM image; (C) particle thickness distribution of S-CuMgAl-LDH-100 based on SEM image.

Figure S8. (A) SEM image of S-CuMgAl-LDH-120; (B) particle size distribution of S-CuMgAl-LDH-120 based on SEM image; (C) particle thickness distribution of S-CuMgAl-LDH-120 based on SEM image.

Figure S9. (A) TEM image of U-CuMgAl(CO₃)-LDH; (B) particle size distribution of U-CuMgAl(CO₃)-LDH based on TEM image.

Figure S10. (A) TEM image of U-CuMgAl(NO₃)-LDH; (B) particle size distribution of U-CuMgAl(NO₃)-LDH based on TEM image.

Figure S11. (A) TEM image of CuMgAl-LDH@mSiO₂; (B) particle thickness distribution of CuMgAl-LDH@mSiO₂ based on TEM image.

Figure S12. (A) TEM image of S-CuMgAl-LDH-80; (B) particle size distribution of S-CuMgAl-LDH-80 based on TEM image; (C) particle thickness distribution of S-CuMgAl-LDH-80 based on TEM image.

Figure S13. (A) TEM image of S-CuMgAl-LDH-100; (B) particle size distribution of S-CuMgAl-LDH-100 based on TEM image; (C) particle thickness distribution of S-CuMgAl-LDH-100 based on TEM image.

Figure S14. (A) TEM image of S-CuMgAl-LDH-120; (B) particle size distribution of S-CuMgAl-LDH-120 based on TEM image; (C) particle thickness distribution of S-CuMgAl-LDH-120 based on TEM image.

Catalyst	$S_{BET}^{a} (m^{2}/g)$	D _{BET} ^b (nm)	$V_{\rm BET}$ c (cm ³ /g)		
S-CuMgAl-LDH-80	111.8	9.9	0.280		
S-CuMgAl-LDH-100	89.8	10.5	0.240		
S-CuMgAl-LDH-120	75.5	15.9	0.260		
U-CuMgAl(CO ₃)-LDH	17.1	18.8	0.081		
U-CuMgAl(NO ₃)-LDH	17.3	19.1	0.060		
CuMgAl-LDH@mSiO2	244.3	7.6	0.460		

Table S1. N₂ sorption isotherms and pore size distribution of various catalysts

^a S_{BET} represents the specific surface area; ^b D_{BET} represents the average pore size; and ^c V_{BET} denotes the pore volume.

Catalyst	Reaction temperature	molar ratio of phenol/H ₂ O ₂	weight ratio of phenol/ catalyst	Cu content (wt.%)	$X_{ m ph}$ ^a	$\mathcal{S}_{\mathrm{CAT+HQ}}$ ^b	H ₂ O ₂ Eff ^c (%)	Normal Activity ^d	Ref.
CuMgAl-LDH@mSiO ₂	65 °C	1.0	10.0	0.9	58.3	93.4	58.3	423.0	this work
CuMgAl-LDH@mSiO ₂	65 °C	2.0	10.0	0.9	45.6	97.3	91.1	330.8	this work
CuMgAl-LDH@mSiO ₂	65 °C	3.0	10.0	0.9	31.2	96.8	93.6	234.1	this work
CuMgAl-LDH@mSiO ₂	65 °C	5.0	10.0	0.9	19.1	95.7	95.5	143.3	this work
5CuNaY	60 °C	1.0	10.0	2.4	45.3	62.9	45.3	128.0	1
5CuHβ	60 °C	1.0	10.0	1.1	49.3	73.0	49.3	317.1	1
5CuHZSM-5	60 °C	1.0	10.0	1.0	47.0	14.6	47.0	305.2	1
CuFe ₂ O ₄ -RGO ₂₀	55 °C	1.0	94.0	21.2	35.5	95.2	35.5	101.4	2
CuCl ₂ +SiW ₁₂	70 °C	0.5	10.0	2.0	38.7	83.9	17.8	130.6	3
[Cu-Imace-H][NO ₃]	70 °C	1.0	10.0		27.0	99.6	27.0	54.0	4

Table S2. Catalytic performance toward phenol hydroxylation over various catalysts

^a X_{ph} represents conversion of phenol. ^b S_{CAT+HQ} represents the selectivity toward major products including hydroquinone (HQ) and catechol (CAT). ^c H₂O₂ Eff %=100×(H₂O₂ consumed in the formation of products, mol)/(total H₂O₂ added, mol). ^d Normalized activity value (mol phenol /mol Cu²⁺) is calculated based on the coverted phenol by per mole of copper.

Figure S15. SEM image of the used CuMgAl-LDH@mSiO₂ catalyst after four consecutive recycles of phenol hydroxylation.

References:

- J. Wang, J. N. Park, H. C. Jeong, K. S. Choi, X. Y. Wei, S. I. Hong and C. W. Lee, *Energy* & *Fuels*, 2004, 18, 470-476.
- 2 Y. Zhao, G. He, W. Dai and H. Chen, Ind. Eng. Chem. Res., 2014, 53, 12566-12574.
- 3 H. Zhang, X. Zhang, Y. Ding, L. Yan, T. Ren and J. Suo, New J. Chem., 2002, 26, 376-377.
- 4 G. Yang, X. Hu, Y. Wu, C. Liu and Z. Zhang, Catal. Commun., 2012, 26, 132-135.