Electronic Supplementary Information (ESI)

Aryl-Fused Tetrathianaphthalene (TTN): Synthesis, Structures, Properties, and Cocrystals with Fullerenes

Yantao Sun, Zili Cui, Lichuan Chen, Xiaofeng Lu, Yuewei Wu, Hao-Li Zhang, and Xiangfeng Shao*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou 730000, Gansu Province, China. Fax: (+86) 0931 8915557; Tel: (+86) 0931 8912500; E-mail: shaoxf@lzu.edu.cn (X. Shao)

Contents

- **I.** Characterization of the compounds (S2–S3)
- II. UV/Vis spectra and cyclic voltammograms (CV) of TTNs (S4–S8)
- **III.** Calculated frontier orbitals of TTNs (S9–S14)
- **IV.** Selected crystallographic data of TTNs (S14–S20)
- V. Crystallographic data of "TTN•fullerene" cocrystals (S21–S24)
- VI. Optical spectra of the representative "TTN•fullerene" cocrystals (S25–S26)
- **VII.** Original NMR and Mass Spectra for TTNs and TTF3 (S27–S40)

I. Characterization of the compounds

The following are the appearance, yield, melting point (Mp), ¹H NMR, ¹⁹F NMR, ¹³C NMR, and high-resolution mass spectra (HRMS) for the compounds reported in this work.

TTN-1

White solid(Yield = 63%); Mp: 249.5-251.0 °C.¹H NMR (400 MHz, CDCl₃) δ 7.41-7.38 (m, 4H), 7.30-7.28 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 135.65, 128.64, 128.38, 124.48. HRMS (C₁₄H₈S₄ + H): Calc. 304.9582, found 304.9583.

TTN-2

White solid(Yield = 73%); Mp: 309.7-311.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 4H), 3.87 (s, 12H). HRMS (C₁₈H₁₆O₄ S₄): Calc. 423.9926, found 423.9916.

TTN-4

White solid (Yield = 70%); Mp: 226.8-228.6 °C. ¹⁹F NMR (376 MHz, CDCl₃) δ -132.60--132.65 (m,4F), -152.19--152.24 (m, 4F). HRMS (C₁₄F₈S₄): Calc. 447.8750, found 447.8749.

TTN-5

White solid(Yield = 78%). Mp: 222.0-224.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 5.8, 3.4 Hz, 1H), 7.28 (dd, J = 5.8, 3.3 Hz, 1H), 6.90 (s, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.37 (s), 135.72 (s), 128.61 (s), 128.36 (s), 126.96 (s), 125.46 (s), 111.53 (s), 56.23 (s). HRMS (C₁₆H₁₂O₂S₄): Calc. 363.9715, found 363.9706.

TTN-6

White solid(Yield = 81%); Mp: 251.0-252.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 5.8, 3.4 Hz, 2H), 7.29 (dd, J = 5.8, 3.3 Hz, 4H), 2.33 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 136.12, 129.72, 128.54, 128.34, 127.41, 124.78, , 13.66. HRMS (C₁₄H₁₀S₅): Calc. 337.9381, found 337.9372.

TTN-7

White solid(Yield = 61%). Decompositon point: 273°C. ¹H NMR (400 MHz, CDCl₃) δ 6.88 (s, 1H), 3.87 (s, 3H), 2.31 (s, 3H).¹³C NMR (100 MHz, CDCl3) δ 149.36, 129.62, 127.47, 127.45, 125.66, 111.39, 56.23, 13.65. HRMS (C₁₆H₁₄O₂S₅): Calc. 397.9592, found 397.9581.

TTN-8

White solid (Yield = 71%); Mp 237.7-238.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.38 (m, 2H), 7.32-7.30 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -133.27--133.32 (m, 2F), -153.33--153.38(m, 2F). HRMS (C₁₄H₄F₄S₄): Calc. 375.9126, found 375.9119.

TTN-9

White solid (Yield = 71%); Mp > 310 °C. ¹H NMR (400 MHz, CDCl₃) 6.89 (s, 1H), 4.24 (s, 2H). HRMS ($C_{18}H_{12}O_4S_4$): Calc. 419.9613, found 419.9623.

II. UV/Vis absorption spectra and cyclic voltammograms (CV) of TTNs

Fig. S1 Repeated cyclic voltammograms (20 times) of TTN3

Fig. S2 UV-Vis spectra in DCM solution (a), solid state absorption spectra (b), cyclic voltammogram (c) and differential pulse voltammetry (d) of TTN1

Fig. S3 UV-Vis spectra in DCM solution (a), solid state absorption spectra (b), cyclic voltammogram (c) and differential pulse voltammetry (d) of TTN2

Fig. S4 UV-Vis spectra in DCM solution (a), solid state absorption spectra (b), cyclic voltammogram (c) and differential pulse voltammetry (d) of **TTN4**

Fig. S5 UV-Vis spectra in DCM solution (a), solid state absorption spectra (b), cyclic voltammogram (c) and differential pulse voltammetry (d) of TTN5

Fig. S6 UV-Vis spectra in DCM solution (a), solid state absorption spectra (b), cyclic voltammogram (c) and differential pulse voltammetry (d) of **TTN6**

Fig. S7 UV-Vis spectra in DCM solution (a), solid state absorption spectra (b), cyclic voltammogram (c) and differential pulse voltammetry (d) of TTN7

Fig. S8 UV-Vis spectra in DCM solution (a), solid state absorption spectra (b), cyclic voltammogram (c) and differential pulse voltammetry (d) of TTN8

Fig. S9 UV-Vis spectra in DCM solution (a), solid state absorption spectra (b), cyclic voltammogram (c) and differential pulse voltammetry (d) of **TTN9**

III. Calculated frontier orbitals for TTNs

Scheme S1. Chemical structures of TTNs for theoretical calculation.

	Energy / eV				
-	LUMO	НОМО	$\varDelta E^{[b]}$		
TTN1 ^[a]	-0.955	-5.349	4.394		
TTN2 ^[a]	-0.607	-4.949	4.342		
TTN3 ^[a]	-0.868	-5.264	4.396		
TTN4 ^[a]	-1.724	-6.061	4.337		
TTN5 ^[c]	-0.853 ^[c]	-5.120 ^[c]	4.267		
TTN6 ^[a]	-0.975	-5.304	4.329		
TTN7 ^[c]	-0.828 ^[c]	-5.183 ^[c]	4.355		
TTN8 ^[c]	-1.417 ^[c]	-5.702 ^[c]	4.285		
TTN9 ^[a]	-0.646	-5.046	4.400		
TTF3 ^[a]	-1.000	-4.811	3.811		

Tahla	S1	Calculated	enerou	levels
Table	91	Calculated	energy	levels

^[a] Calculation was conducted on the basis of the molecular geometry in the crystal structures. ^[b] HOMO–LUMO energy gap $\Delta E = E_{\text{LUMO}} - E_{\text{HOMO}}$. ^[c] Calculation was conducted on the basis of optimized molecular geometry.

LUMO: -0.955 eV

HOMO: -5.349 eV Fig. S10 HOMO and LUMO orbitals of TTN1

HOMO: -4.949 eV Fig. S11 HOMO and LUMO orbitals of TTN2

LUMO: -1.724 eV

HOMO: -6.061 eV Fig. S12 HOMO and LUMO orbitals of TTN4

Fig. S13 HOMO and LUMO orbitals of TTN5

LUMO: -0.975 eV

HOMO: -5.304 eV

Fig. S14 HOMO and LUMO orbitals of TTN6

LUMO: -0.828 eV

Fig. S15 HOMO and LUMO orbitals of TTN7

LUMO: -1.417 eV

HOMO: -5.702 eV Fig. S16 HOMO and LUMO orbitals of TTN8

LUMO: -0.646 eV

HOMO: -5.046 eV

Fig. S17 HOMO and LUMO orbitals of TTN9

Fig. S18 Comparison of energy levels for TTN1–TTN9.

IV. Selected crystallographic data of TTNs

Fig. S19 Photographs for the single crystals of TTNs. The grid for the background of each figure is $1 \text{ mm} \times 1 \text{mm}$.

	TTN1	TTN2	TTN3•CS ₂	TTN4	TTN6	TTN9	TTF3
CCDC number	1492704	1492705	1492706	1492707	1492708	1492710	1492709
Empirical formula	$C_{14}H_8S_4$	$C_{18}H_{16}O_4S_4$	$C_{15}H_{12}S_8$	$C_{14}F_8S_4$	$C_{14}H_{10}S_5$	$C_{18}H_{12}O_4S_4$	$C_{14}H_{12}S_{6}$
Formula weight	304.44	424.54	448.72	448.38	338.52	420.52	372.60
Temperature / K	293(2)	293(2)	293(2)	296(2)	293(2)	293(2)	289.9
λ / Å	0.71073	0.71073	1.54184	0.71073	0.71073	0.71073	1.5418
Crystal size / mm ³	0.37×0.34×0.23	0.36×0.26×0.24	0.33×0.24×0.11	0.28×0.16×0.07	0.27×0.08×0.06	0.14×0.11×0.05	0.27×0.09×0.07
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
space group	P2/n	$P2_{I}/c$	$P2_l/c$	$P2_l/c$	P-1	$P2_I/n$	<i>I2/a</i>
<i>a</i> / Å	7.4504(9)	12.6610(5)	8.8305(6)	12.361(19)	7.4016(9)	7.8871(15)	17.1106(5)
<i>b</i> / Å	8.4459(9)	10.1047(5)	7.1569(6)	3.954(6)	7.7951(9)	11.518(2)	7.1272(2)
<i>c</i> / Å	10.8382(13)	7.3307(3)	15.0030(9)	15.050(2)	12.6647(11)	18.586(3)	13.5589(4)
α/°	90	90	90	90	83.801(8)	90	90
β / °	106.345(13)	96.481(4)	91.764(6)	97.159(15)	83.450(9)	90	104.115(3)
γ / °	90	90	90	90	77.253(10)	90	90
$V / \text{\AA}^3$	654.43(13)	928.18(7)	947.73(11)	729.9(19)	705.88(14)	1688.5(5)	1603.58(8)
Ζ	2	2	2	2	2	4	4
$d_{\rm calc}$ / g·cm ⁻³	1.545	1.519	1.572	2.040	2.389	1.654	1.543
μ / mm^{-1}	0.701	0.533	8.677	0.740	1.202	0.586	0.838
$2 heta_{ m max}$ / °	57.16	56.7	141.56	51.3	56.9	57.26	51.22
Data / restraints / parameters	1484 / 0 / 82	2093 / 0 / 120	1803 / 0 / 108	1373 / 0 / 118	3189 / 0 / 174	3737 / 0 / 235	1495/0/94
GooF	1.076	1.044	1.036	1.024	1.071	1.029	1.094
$R[I \ge 2\sigma(I)]$	0.0505	0.0369	0.0547	0.0428	0.0472	0.0598	0.0528
wR_2	0.1097	0.0874	0.1416	0.0976	0.1016	0.1292	0.1535

 Table 2 Selected crystallographic data for TTNs and TTF3

The following are the crystal structures of **TTN1**, **TTN2**, **TTN4**, **TTN6**, and **TTN9**. In these figures, panels (a), (b), and (c) depict the side view, top view, and packing structure of the corresponding TTN, respectively. In general, the grey, green, pink, and pale cyan balls represent carbon, sulfur, fluorine, and hydrogen atoms, respectively.

Fig. S20 Crystal structure of **TTN1**: (a), (b), and (c) depict the side view, top view, and packing structures, respectively.

Fig. S21 Crystal structure of **TTN2**: (a), (b), and (c) depict the side view, top view, and packing structures, respectively.

Fig. S22 Crystal structure of **TTN4**: (a), (b), and (c) depict the side view, top view, and packing structures, respectively.

Fig. S23 Crystal structure of **TTN6**: (a), (b), and (c) depict the side view, top view, and packing structures, respectively.

Fig. S24 Crystal structure of TTN9: (a), (b), and (c) depict the side view, top view, and packing structures, respectively.

V. Crystallographic data of "TTN•fullerene" cocrystals

The samples for the crystallographic analyses of the complexes were obtained by slow evaporation of the solvent. **TTN3**•C₆₀•CS₂ was selected as an example. It was prepared by slow evaporation of the mixed solution of 1 (7.4 mg mg) and C₆₀ (7.2 mg) in CS₂ (10 ml) at room temperature (RT). After 5 days, the black block single crystals were formed.

TTN	Fullerene	Solvent	Appearance	Composition
TTN3 , 7.4 mg	C ₆₀ , 7.2 mg	CS _{2,} 10 mL	Black block	$(TTN3) \bullet (C_{60}) \bullet (CS_2)$
TTN3, 7.4 mg	C ₆₀ , 7.2 mg	PhCl, 10 mL	Black block	$(TTN3) \cdot (C_{60})$
TTN3, 7.4 mg	C ₇₀ , 8.4 mg	CS ₂ , 10 mL	Black block	$(TTN3) \bullet (C_{70}) \bullet (CS_2)$
TTN3, 7.4 mg	C ₇₀ , 8.4 mg	PhCH ₃ , 10 mL	Black block	Not determined
TTN3 , 14.4 mg	C ₇₀ , 16.8 mg	PhCl, 16 mL	Black block	(TTN3)•(C ₇₀)
TTN2, 8.5 mg	C ₆₀ , 7.2 mg	PhCl, 10 mL	Black block	$(TTN2) \bullet (C_{60})$
TTN4, 8.8 mg	C ₆₀ , 7.2 mg	PhCl, 10 mL	Black block	Not determined
TTN5 , 7.2 mg	C ₆₀ , 7.2 mg	PhCl, 10 mL	Black block	Not determined
TTN6, 6.8 mg	C ₆₀ , 7.2 mg	PhCl, 10 mL	Black block	$(TTN6)_2 \bullet (C_{60})$

 Table S3 Experimental conditions for the preparation of "TTN•fullerene" cocrystals

Fig. S25 Photographs for the single crystals of "**TTN•fullerene**" cocrystals. The grid for the background of each figure is 1 mm × 1mm.

	$(TTN3) \bullet (C_{60}) \bullet (CS_2)$	(TTN3)•(C ₆₀)	$(TTN3) \bullet (C_{70}) \bullet (CS_2)$	(TTN3)•(C ₇₀)	(TTN2)•(C ₆₀)	$(TTN6)_2 \bullet (C_{60})$
CCDC number	1492711	1492712	1492713	1492714	1492715	1492716
Empirical formula	$C_{75}H_{12}S_8$	$C_{74}H_{12}S_6$	$C_{85}H_{12}S_8$	$C_{84}H_{12}S_6$	$C_{78}H_{16}O_4S_4$	$C_{88}H_{20}S_{10}$
Formula weight	1169.32	1093.20	1289.43	1213.30	1145.15	1397.64
Temperature / K	110(2)	110(2)	110(2)	77(1)	110(2)	110(2)
λ / Å	0.71073	0.71073	1.5418	0.95382	1.5418	1.5418
Crystal size / mm ³	0.38×0.35×0.34	0.19×0.17×0.14	0.42×0.35×0.32	0.25×0.19×0.17	0.30×0.20×0.07	0.33×0.26×0.16
Crystal system	Triclinic	Orthorhombic	Triclinic	Triclinic	Monoclinic	Monoclinic
space group	P-1	Pnma	P-1	P-1	<i>I2/a</i>	$P2_l/c$
<i>a</i> / Å	9.9766(4)	17.5533(19)	10.0905(3)	10.1580(9)	14.7684(5)	17.97(4)
b / Å	10.6457(6)	24.604(3)	13.6277(3)	12.6980(9)	13.5962(4)	9.81(2)
<i>c</i> / Å	10.9297(6)	9.7837 (6)	18.3146(6)	19.1600(13)	22.7333(10)	17.28(6)
α / °	77.433(5)	90	86.280(2)	93.18	90	90
β / °	81.220(4)	90	77.027(3)	99.488(12)	103.105(4)	116.4(3)
γ / °	80.005(4)	90	87.191(2)	104.98	90	90
$V / \text{\AA}^3$	1107.82(10)	4225.3 (8)	2447.46(12)	2342.(3)	4445.8(3)	2729(13)
Ζ	1	4	2	2	4	2
$d_{\rm calc}$ / g·cm ⁻³	1.753	1.718	1.750	1.720	1.711	1.701
μ / mm^{-1}	0.463	0.383	3.874	0.409	2.53	4.224
$2 heta_{ m max}$ / °	57.2	56.92	141.52	59.6	141.38	142.3
Data / restraints / parameters	4986/0/378	4835/0/369	9358/0/845	10169/0/816	4201/0/390	4291/222/384
GooF	1.107	1.046	1.038	1.112	1.138	1.074
$R[I \ge 2\sigma(I)]$	0.0526	0.0559	0.0516	0.0688	0.0681	0.1064
wR_2	0.1243	0.1136	0.1380	0.2102	0.1877	0.2869

Table 4 Selected crystallographic data for "TTN•fullerene" cocrystals

Fig. S26 Crystal structure of $(TTN2) \cdot (C_{60})$: a) intermolecular interactions between TTN2 and C_{60} ; b) packing structures. The dashed lines shows the intermolecular interactions and the hydrogen atoms are omitted for clarity

Fig. S27 Crystal structure of **(TTN6)**₂•(**C**₆₀): a) intermolecular interactions between **TTN6** and C₆₀; b) packing structures; c) packing structure of C₆₀ molecules. The dashed lines shows the intermolecular interactions and the hydrogen atoms are omitted for clarity

VI. Optical spectra of the representative "TTN•fullerene" cocrystals

Fig. S28 IR spectra of $(TTN3) \cdot (C_{60})$ cocrystal, along with those of TTN3 and C_{60} for comparison. The spectra were measured on the dispersed samples in KBr pellet, and the black dashed lines are guides for the eye.

Fig. S29 Solid state absorption spectra of $(TTN3) \cdot (C_{60})$ cocrystal, along with those of TTN3 and C_{60} for comparison. The spectra were measured on the dispersed samples in KBr pellet.

Fig. S30 IR spectra of (**TTN3**)•(C₇₀) cocrystal, along with those of **TTN3** and C₇₀ for comparison. The spectra were measured on the dispersed samples in KBr pellet, and the black dashed lines are guides for the eye.

Fig. S31 Solid state absorption spectra of $(TTN3) \cdot (C_{70})$ cocrystal, along with those of TTN3 and C_{70} for comparison. The spectra were measured on the dispersed samples in KBr pellet.

VII. Original NMR and Mass Spectra for TTNs

S29

S30

S32

