Supporting Information

Phenylsulfonic acid functionalized carbon quantum dots based biosensor for acetylcholinesterase activity monitoring and inhibitor screening

Fengqi Zhou,[†] Hui Feng,[†] Yafen Fang, Qian Sun, and Zhaosheng Qian*

College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China

1. Figure S1. (A) TEM image of CQDs. (B) TEM image of PSA-CQDs nanoprobe. Insets: high-resolution TEM images.

2. Figure S2. Comparison of XPS wide spectra between mere CQDs (A) and PSA-CQDs nanoprobe (B), and high-resolution S2p XPS spectrum for PSA-CQDs nanoprobe (C).

3. Figure S3. IR spectra of PSA-CQDs nanoprobe and CQDs.

4. Figure S4. Fluorescence spectra of PSA-CQDs nanoprobe with the change of excitation wavelengths in the range of 395 - 465 nm.

5. Figure S5. Time-resolved decay curves of PSA-CQDs nanoprobe in the presence of different amount of Cu^{2+} . The lifetimes are calculated to be 4.4 ns.

6. Figure S6. The influence of metal cations on the fluorescence of PSA-CQDs nanoprobe. The concentration for each metal ion is 40.0μ M.

7. Figure S7. The influence of amino acids and amines on the fluorescence of PSA-CQDs/Cu(II) solution.

8. Figure S8. The influence of ATCh on the fluorescence of PSA-CQDs nanoprobe.

9. Figure S9. Fluorescence intensity of the sensing system containing PSA-CQDs nanoprobe, Cu^{2+} (12.0 μ M), ATCh (1480.0 μ M) and AChE (600.0 U/L) as a function of incubation time.

10. Figure S10. The reversibility of PSA-CQDs nanoprobe in response to Cu^{2+} and GSH. The concentration for each species is 20.0 μ M.

11. Figure S11.Selectivity of the assay toward AChE with comparison to ACP, ALP, BSA, and IgG in buffer solution. I_0 and I represent the fluorescence intensity before and after the addition of analytes. Activity used for each enzyme is 600.0 U/L.

Figure S1. (A) TEM image of CQDs. (B) TEM image of PSA-CQDs nanoprobe. Insets: high-resolution TEM images.

Figure S2. Comparison of XPS wide spectra between mere CQDs (A) and PSA-CQDs nanoprobe (B), and high-resolution S2p XPS spectrum for PSA-CQDs nanoprobe (C).

Figure S3. IR spectra of PSA-CQDs nanoprobe and CQDs.

Figure S4. Fluorescence spectra of PSA-CQDs nanoprobe with the change of excitation wavelengths in the range of 395 – 465 nm.

Figure S5. Time-resolved decay curves of PSA-CQDs nanoprobe in the presence of different amount of Cu^{2+} . The lifetimes are calculated to be 4.4 ns.

Figure S6. The influence of metal cations on the fluorescence of PSA-CQDs nanoprobe. The concentration for each metal ion is $40.0 \ \mu M$.

Figure S7. The influence of amino acids and amines on the fluorescence of PSA-CQDs/Cu(II) solution.

Figure S8. The influence of ATCh amount on the fluorescence of PSA-CQDs nanoprobe.

Figure S9. Fluorescence intensity of the sensing system containing PSA-CQDs nanoprobe, Cu^{2+} (12.0 μ M), ATCh (1480.0 μ M) and AChE (600.0 U/L) as a function of incubation time.

Figure S10. The reversibility of PSA-CQDs nanoprobe in response to Cu^{2+} and GSH. The concentration for each species is 20.0 μ M.

Figure S11.Selectivity of the assay toward AChE with comparison to ACP, ALP, BSA, and IgG in buffer solution. I_0 and I represent the fluorescence intensity before and after the addition of analytes. Activity used for each enzyme is 600.0 U/L.