Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

for

Deletion of the side chain assembly reveals diverse post-PKS modifications in the biosynthesis of ansatrienins

Xiaomei Li,^a Jing Zhu,^b Guoyin Shi,^b Mingwei Sun,^a Zhixing Guo,^a Haoxin Wang,^b Chunhua Lu,^{*,a} and Yuemao Shen^{*,a,b}

^aKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences,

Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China.

^bState Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University,

Jinan, Shandong 250100, P. R. China

*Correspondence:

Chunhua Lu

<u>Tel: +86-531-88382108</u>, E-mail: <u>ahua0966@sdu.edu.cn</u>

Yuemao Shen

Tel: +86-531-88382108, E-mail: yshen@sdu.edu.cn

Table of Contents

- Table S1: NMR spectroscopy data (CD₃OD) for compound 1
- Table S2: NMR spectroscopy data [(CD₃)₂CO] for compound 2
- Table S3: NMR spectroscopy data (CD₃OD) for compound 3
- Table S4: NMR spectroscopy data (CD₃OD) for compound 4
- Table S5: NMR spectroscopy data (CD₃OD) for compound 5
- Table S6: NMR spectroscopy data (CD₃OD) for compound 6
- Table S7: NMR spectroscopy data (CD₃OD) for compound 7
- Figure S1. ¹H NMR (600 MHz, CD₃OD) spectrum for compound 1
- Figure S2. ¹³C NMR (151 MHz, CD₃OD) spectrum for compound 1
- Figure S3. HSQC spectrum for compound 1
- Figure S4. HMBC spectrum for compound 1
- Figure S5. Enlarged HMBC spectrum 1 for compound 1
- Figure S6. Enlarged HMBC spectrum 2 for compound 1
- Figure S7. Enlarged HMBC spectrum 3 for compound 1
- Figure S8. ¹H-¹H COSY spectrum for compound 1
- Figure S9. NOESY spectrum for compound 1
- Figure S10. ¹H NMR [600 MHz, (CD₃)₂CO] spectrum for compound 2
- Figure S11. ¹³C NMR [151 MHz, (CD₃)₂CO] spectrum for compound 2
- Figure S12. HSQC spectrum for compound 2
- Figure S13. HMBC spectrum for compound 2
- Figure S14. ¹H-¹H COSY spectrum for compound 2

Figure S15. NOESY spectrum for compound 2

- Figure S16. Enlarged NOESY spectrum for compound 2
- Figure S17. ¹H NMR (600 MHz, CD₃OD) spectrum for compound **3**
- Figure S18. ¹³C NMR (151 MHz, CD₃OD) spectrum for compound 3
- Figure S19. HSQC spectrum for compound 3
- Figure S20. HMBC spectrum for compound 3
- Figure S21. ¹H-¹H COSY spectrum for compound 3
- Figure S22. NOESY spectrum for compound 3
- Figure S23. ¹H NMR (600 MHz, CD₃OD) spectrum for compound 4
- Figure S24. ¹³C NMR (151 MHz, CD₃OD) spectrum for compound 4
- Figure S25. HSQC spectrum for compound 4
- Figure S26. HMBC spectrum for compound 4
- Figure S27. Enlarged HMBC spectrum for compound 4
- Figure S28. ¹H-¹H COSY spectrum for compound 4
- Figure S29. NOESY spectrum for compound 4
- Figure S30. ¹H NMR (600 MHz, CD₃OD) spectrum for compound 5
- Figure S31. ¹³C NMR (151 MHz, CD₃OD) spectrum for compound 5
- Figure S32. HSQC spectrum for compound 5
- Figure S33. HMBC spectrum for compound 5
- Figure S34. ¹H-¹H COSY spectrum for compound 5
- Figure S35. NOESY spectrum for compound 5
- Figure S36. ¹H NMR (400 MHz, CD₃OD) spectrum for compound 6
- Figure S37. ¹³C NMR (101 MHz, CD₃OD) spectrum for compound 6

Figure S38. HSQC spectrum for compound 6

- Figure S39. HMBC spectrum for compound 6
- Figure S40. ¹H-¹H COSY spectrum for compound 6
- Figure S41. NOESY spectrum for compound 6
- Figure S42. ¹H NMR (600 MHz, CD₃OD) spectrum for compound **7**
- Figure S43. ¹³C NMR (151 MHz, CD₃OD) spectrum for compound **7**
- Figure S44. HSQC spectrum for compound 7
- Figure S45. HMBC spectrum for compound 7
- Figure S46. ¹H-¹H COSY spectrum for compound 7
- Figure S47. NOESY spectrum for compound 7
- Figure S48. High-resolution ESIMS spectrum for compound 1
- Figure S49. High-resolution ESIMS spectrum for compound 2
- Figure S50. High-resolution ESIMS spectrum for compound 3
- Figure S51. High-resolution ESIMS spectrum for compound 4
- Figure S52. High-resolution ESIMS spectrum for compound 5
- Figure S53. High-resolution ESIMS spectrum for compound 6
- Figure S54. High-resolution ESIMS spectrum for compound 7
- Figure S55. Cell viability was quantified by SRB assay at 72 h after treatment with 40 μ M of indicated compounds
- **Figure S56.** A. HPLC preparation of compounds **1-7**. B. Ultroviolet absorption curves of compounds **1-7**.

position	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{\rm C}$ mult.	HMBC	¹ H- ¹ H COSY
1		172.6s		
2α	2.93 (dd, 17.5, 7.9)	00.01	C-4, C-3, C-1	H-2 <i>β</i> , H-3
2β	2.62 (dd, 17.5, 4.9)	38.80	C-4, C-3, C-1	H-2 <i>a</i> , H-3
3	4.03 (m)	77.0d	MeO-3, C-5, C-1	H-2 <i>α</i> , H-2 <i>β</i> , H-4
4	3.63 (dd, 6.1, 4.2)	66.2d	C-3, C-6, C-20, C-1	H-3, H-5
5	4.63 (dd, 8.5, 6.3)	78.5d	C-4, C-3, C-6, C-19, C-7	H-4, H-6
6	6.07 (dd, 15.8, 6.2)	126.1d	C-4, C-5, C-8	H-7, H-5
7	6.69 (dd, 15.8, 10.5)	140.3d	C-5, C-6, C-8, C-9	H-8, H-6
8	6.29 (dd, 15.1,10.7)	132.1d	C-10, C-6, C-7	H-9, H-7
9	5.64 (ddd, 15.4, 10.7, 4.9)	135.1d	C-10, C-11, C-19	H-10 <i>α</i> , H-10 <i>β</i> , H-8
10α	2.52 (m)	20.24	C-12, C-11, C-8, C-9	H-10 <i>β</i> , H-11, H-9
10 <i>β</i>	2.39 (m)	30.21	C-12, C-11, C-8, C-9	H-10 <i>α</i> , H-11, H-9
11	3.60 (m)	72.2d	C-24, C-13, C-9	H-12, H-10 <i>α</i> , H-10 <i>β</i>
12	2.00 (m)	44.3d	C-24, C-10, C-13, C-11	H-11, H-13, H-24
13	4.38 (d, 9.4)	70.7d	C-24, C-25, C-12, C-15, C-14	H-12
14		138.0s		
15	5.44 (dd, 10.2, 4.1)	130.6d	C-25, C-13	H-16α, H-16β
16 <i>α</i>	3.02(m)	20.61	C-17, C-15, C-14	H-16 <i>β</i> , H-17 <i>α</i> , H-17 <i>β</i> , H-15
16 <i>β</i>	1.81 (m)	29.01	C-17, C-15, C-14	H-16α, H-17α, H-17β, H-15
17α	2.87 (m)	24.04	C-16, C-23, C-18, C-19	H-16α, H-16β, H-17β
17 <i>β</i>	2.22 (m)	34.01	C-16, C-23, C-18, C-19	H-16α, H-16β, H-17α
18		132.6s		
19		140.0s		
20		125.5s		
21	7.22 (d, 2.8)	107.2d	C-23, C-20, C-19, C-22	H-23
22		151.3s		
23	6.45 (d,2.8)	115.5d	C-17, C-21, C-19, C-22	H-21
24	1.10 (d, 6.9)	10.6q	C-12, C-13, C-11	H-12
25	1.77 (s)	19.3q	C-13, C-15, C-14	
MeO-3	3.35 (s)	57.6q	C-3	

Table S1: NMR spectroscopy data (CD₃OD) for compound 1

nosition	δu (mult_/in Hz)	δomult	HMBC	
1		171 7s		
20	2.79 (dd. 17.3, 5.3)	171.70	C-1	H-2 <i>B</i> H-3
2 <i>B</i>	2 59 (d 17 5)	38.4t	C-4 C-3 C-1	$H-2\alpha$
3	4 20 (t 4 9)	75.0d	MeQ-3 C-1	$H_{-2\alpha}$ H_{-4}
4	3.97 (dd 7.5.4.9)	63.4d	C-3 C-6	H-3 H-5
5	4.94 (t. 7.0)	75.1d	C-4, C-3, C-6, C-19	H-4, H-6
6	5.95 (dd. 15.7. 6.3)	126.9d	C-4, C-5, C-8	H-7. H-5
7	6.65 (dd, 15.6, 10.3)	138.5d	C-9, C-5	H-8, H-6
8	6.23 (dd, 15.1,10.3)	131.6d	C-10, C-6, C-7	H-9, H-7
9	5.81 (dt, 15.2, 7.6)	134.8d	C-10, C-11, C-7	H-10 <i>α</i> , H-10 <i>β</i> , H-8
10 <i>α</i>	2.45 (m)	07.04	C-12, C-11, C-8, C-9	H-10 <i>β</i> , H-11, H-9
10 <i>β</i>	2.38 (m)	37.80	C-12, C-11, C-8, C-9	H-10 <i>α</i> , H-11, H-9
11	3.68 (m)	72.8d	C-24, C-13, C-9	H-12, H-10 <i>α</i> , H-10 <i>β</i>
12	1.93 (m)	42.9d	C-24, C-10, C-13, C-11	H-11, H-13, H-24
13	4.44 (d, 3.1)	70.2d		H-12
14		138.9s		
15	5.23 (t, 5.6)	129.1d	C-17, C-13	H-16α, H-16β
16 <i>α</i>	2.06(m)	28 5t		H-16 <i>β</i> , H-17 <i>α</i> , H-17 <i>β</i> , H-15
16 <i>β</i>	2.47 (m)	20.51	C-17	H-16α, H-17α, H-17β, H-15
17α	2.82 (dt, 12.6, 5.5)	22 Ot	C-16, C-23, C-15, C-18, C-19	H-16α, H-16 <i>β,</i> H-17 <i>β</i>
17 <i>β</i>	2.28 (dt, 12.5, 4.6)	33.01	C-16, C-23, C-15, C-18, C-19	H-16α, H-16β, H-17α
18		131.9s		
19		138.4s		
20		127.5s		
21	7.56 (d, 2.4)	105.3d	C-23, C-20, C-19, C-22	H-23
22		151.6s		
23	6.42 (d,2.7)	113.5d	C-17, C-21, C-19, C-22	H-21
24	1.00 (d, 6.9)	11.3q	C-11, C-12, C-13	H-12
25	1.76 (S)	20.1q	C-13, C-14, C-15	
IVIEU-3	3.35 (S)	57.0q	U-3	

Table S2: NMR spectroscopy data [(CD₃)₂CO] for compound 2

position	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{\rm C}$ mult.	HMBC	¹ H- ¹ H COSY
1		172.5s		
2α	2.78 (m)		C-4, C-3, C-1	H-2 <i>β</i> , H-3
2β	2.73 (dd, 11.4, 5.6)	45.50	C-4, C-3, C-1	H-2 <i>α</i> , H-3
3	4.00 (dt, 9.7, 5.6)	82.1d	C-2, MeO-3, C-5	H-2 α , H-2 β , H-4
4	5.57 (dd, 15.6, 8.8)	130.6d	C-2, C-6	H-3, H-5
5	6.04 (dd, 15.6, 9.8)	135.5d	C-3, C-6, C-7	H-4, H-6
6	5.86 (dd, 14.8, 9.8)	128.3d	C-8, C-9, C-7	H-7, H-5
7	5.98 (dd, 14.8, 10.3)	137.0d	C-6, C-9	H-8, H-6
8	5.90 (dd, 14.6, 10.5)	131.7d	C-10, C-6	H-9, H-7
9	5.52 (ddd, 14.7, 9.1, 6.7)	136.0d	C-10, C-11, C-7	H-10 <i>α</i> , H-10 <i>β</i> , H-8
10 <i>α</i>	2.27 (dd, 13.3, 6.6)	27.6+	C-12, C-11, C-8, C-9	H-10 <i>β</i> , H-9
10 <i>β</i>	1.85 (dt, 13.3, 9.5)	57.00	C-12, C-8, C-9	H-10 <i>α</i> , H-11, H-9
11	3.28 (t, 10.2)	84.2d	C-24, C-12, C-9	H-12, H-10 <i>β</i>
12	1.67 (m)	43.5d	C-24, C-10, C-13, C-11	H-11, H-13, H-24
13	3.82 (d, 10.0)	84.0d	C-24, C-25, C-12, C-15, C-14	H-12
14		85.2s		
15	3.38 (t, 2.9)	48.9d	C-16, C-17, C-23	H-16α, H-16β
16 <i>α</i>	1.72 (dt, 14.2, 3.9)	22 8t	C-17, C-15, C-14	H-16β, H-17α, H-17β, H-15
16 <i>β</i>	2.50 (ddd, 14.2, 6.4, 3.6)	22.00	C-18	H-16α, H-15
17α	2.44 (ddd, 18.4, 13.8, 4.7)	10 Gt	C-16, C-18, C-23	H-16α, H-17β
17 <i>β</i>	2.77 (m)	19.00	C-15, C-18, C-23	H-16α, H-17α
18		134.5s		
19		179.0s		
20		140.5s		
21	7.15 (s)	114.0d	C-20, C-23, C-19	
22		186.3s		
23		147.9s		
24	1.03 (d, 6.4)	13.0q	C-11, C-12, C-13	H-12
25 Ma O D	1.14 (S)	20.5q	C-13, C-14, C-15	
IVIEO-3	3.3∠ (S)	p1.dc	6-3	

Table S3: NMR spectroscopy data (CD₃OD) for compound 3

position	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{\rm C}$ mult.	HMBC	¹ H- ¹ H COSY
1		172.0s		
2α	2.88 (dd, 12.7, 4.4)		C-4, C-3, C-1	H-2 <i>β</i> , H-3
2β	2.71 (dd, 12.5, 10.2)	44.11	C-4, C-3, C-1	H-2 <i>a</i> , H-3
3	4.15 (dt, 9.5, 4.4)	81.3d	C-2, MeO-3, C-5, C-1	H-2 α , H-2 β , H-4
4	5.58 (dd, 15.3, 8.0)	131.1d	C-2, C-3, C-6	H-3, H-5
5	6.27 (m)	136.1d	C-3, C-6, C-7	H-4, H-6
6	6.11 (m)	130.2d	C-8	H-7, H-5
7	6.10 (m)	135.8d	C-5, C-6	H-8, H-6
8	6.07 (m)	133.7d	C-10, C-6, C-7	H-9, H-7
9	5.74 (ddd, 14.7, 8.9, 6.1)	132.1d	C-10, C-11, C-7	H-10 <i>α</i> , H-10 <i>β</i> , H-8
10 <i>α</i>	2.41 (m)	27.5+	C-12, C-11, C-8, C-9	H-10 <i>β</i> , H-11, H-9
10 <i>β</i>	2.31 (m)	57.51	C-12, C-11, C-8, C-9	H-10α, H-11, H-9
11	3.65 (dt, 6.7, 3.2)	72.8d	C-24, C-9	H-12, H-10 <i>α</i> , H-10 <i>β</i>
12	1.81 (m)	41.8d	C-24, C-10, C-13, C-11	H-11, H-13, H-24
13	4.69 (d, 4.8)	70.5d	C-24, C-25, C-12	H-12
14		140.2s		
15	5.19 (t, 8.0)	125.9d	C-25, C-17, C-13	H-16α, H-16β
16 <i>α</i>	2.39(m)	27.6+	C-17, C-18, C-15, C-14	H-16 <i>β</i> , H-17 <i>α</i> , H-17 <i>β</i> , H-15
16 <i>β</i>	2.18 (m)	27.01		H-16α, H-17α, H-17β, H-15
17α	2.97 (m)	22.04	C-16, C-18, C-15, C-23, C-19	H-16α, H-16β, H-17β
17 <i>β</i>	2.84 (m)	33.01	C-16, C-18, C-15, C-23, C-19	H-16α, H-16β, H-17α
18		123.7s		
19		146.3s		
20		128.5s		
21	8.14 (s)	114.4d	C-20, C-23, C-19	
22		147.0s		
23		133.5s		
24	0.87 (d, 6.9)	10.5q	C-12, C-13, C-11	H-12
25	1.74 (s)	20.6q	C-13, C-15, C-14	
26	9.02 (s)	154.5d	C-23, C-22	
MeO-3	3.36 (s)	56.8q	C-3	

Table S4: NMR spectroscopy data (CD₃OD) for compound 4

position	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{\rm C}$ mult.	HMBC	¹ H- ¹ H COSY
1		172.0s		
2α	2.76 (m)	45.01	C-4, C-3, C-1	H-2 <i>β</i> , H-3
2 β	2.66 (dd, 12.7, 9.6)	45.9t	C-4, C-3, C-1	$H-2\alpha$, $H-3$
3	4.56 (m)	71.6d		H-2 α , H-2 β , H-4
4	5.64 (dd, 15.3, 7.3)	133.0d	C-2, C-3, C-5, C-6	H-3, H-5
5	6.21 (dd, 15.2, 10.0)	133.6d	C-3, C-6, C-7	H-4, H-6
6	6.10 (m)	130.4d	C-8	H-7, H-5
7	6.13 (dd, 14.7, 9.8)	135.5d	C-5, C-9	H-8, H-6
8	6.06 (m)	133.8d	C-6, C-7, C-10	H-9, H-7
9	5.73 (m)	131.8d	C-7, C-10, C-11	H-10 <i>α</i> , H-10 <i>β</i> , H-8
10α	2.45 (m)	27.64	C-12, C-11, C-8, C-9	H-10 <i>β</i> , H-11, H-9
10β	2.32 (m)	37.01	C-8, C-9	H-10α, H-11, H-9
11	3.65 (m)	72.9d		H-12, H-10 <i>α</i> , H-10 <i>β</i>
12	1.81 (m)	42.0d	C-24, C-10, C-13, C-11	H-11, H-13, H-24
13	4.67 (d, 4.9)	70.6d	C-24, C-25, C-12, C-14, C-15	H-12
14		139.6s		
15	5.20 (d, 8.0)	126.5d	C-25, C-17, C-13	H-16α, H-16β
16α	2.31 (m)	07.01	C-17, C-15, C-14	H-16β, H-17α, H-17β, H-15
16 β	2.03 (m)	27.9t		H-16 <i>α</i> , H-17 <i>α</i> , H-17 <i>β</i> , H-15
17α	2.81 (m)	00.01	C-16, C-18, C-15, C-23, C-19	H-16 <i>α</i> , H-16 <i>β</i> , H-17 <i>β</i>
17 β	2.76 (m)	29.9t	C-16, C-18, C-15, C-23, C-19	H-16 α , H-16 β , H-17 α
18		130.1s		
19		144.3s		
20		126.4s		
21	7.10 (s)	110.4d	C-20, C-23, C-19, C-22	
22		131.1s		
23		119.1s		
24	0.89 (d, 6.8)	10.5q	C-12, C-13, C-11	H-12
25	1.75 (s)	20.5q	C-13, C-15, C-14	
26	3.35 (m)	30 7t	C-23, C-27	
	3.33 (m)	50.71	C-23, C-27	
27		168.3s		

Table S5: NMR spectroscopy data (CD₃OD) for compound $\mathbf{5}$

position	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{\rm C}$ mult.	НМВС	¹ H- ¹ H COSY
1	· · · ·	171.2s		
2α	2.68 (dd, 12.0, 4.3)	40.04	C-4, C-3, C-1	H-2 <i>β</i> , H-3
2β	2.51 (m)	46.91	C-4, C-3, C-1	H-2α, H-3
3	4.51 (m)	72.0d		H-2 α , H-2 β , H-4
4	5.69 (dd, 14.4, 7.7)	134.3d	C-6	H-3, H-5
5	6.11 (m)	132.7d	C-3	H-4, H-6
6	6.16 (m)	130.9d	C-8	H-7, H-5
7	6.06 (m)	135.0d	C-5	H-8, H-6
8	6.09 (m)	133.8d	C-6	H-9, H-7
9	5.70 (m)	131.7d	C-7	H-10 <i>α</i> , H-10 <i>β</i> , H-8
10α	2.41 (m)	27.74	C-12, C-11, C-8, C-9	H-10 <i>β</i> , H-11, H-9
10β	2.31 (m)	37.71	C-12, C-11, C-8, C-9	H-10α, H-11, H-9
11	3.66 (m)	73.0d		H-12, H-10 <i>α</i> , H-10 <i>β</i>
12	1.85 (m)	42.5d	C-24, C-10, C-11	H-11, H-13, H-24
13	4.63 (d, 6.1)	70.7d	C-24, C-25, C-12, C-14, C-15	H-12
14		139.1s		
15	5.25 (dd, 8.2, 4.9)	127.1d		H-16α, H-16β
16α	2.29(m)	20.04	C-17, C-15, C-14	H-16β, H-17α, H-17β, H-15
16 β	2.01 (m)	30.60		H-16α, H-17α, H-17β, H-15
17α	2.48 (m)	07.54	C-16, C-18, C-23	H-16 α , H-16 β , H-17 β
17 β	2.44 (m)	37.50	C-16, C-18, C-23	H-16 α , H-16 β , H-17 α
18	. ,	145.1s		
19	6.42 (t, 1.7)	113.1d	C-20, C-23, C-17, C-21	H-21, H-23
20		140.1s		
21	7.02 (t, 2.0)	107.1d	C-20, C-19, C-22	H-19, H-23
22		158.6s		
23	6.38 (t, 1.7)	112.8d	C-19, C-22, C-17, C-21	H-19, H-21
24	0.95 (d, 6.9)	10.5q	C-12, C-13, C-11	H-12
25	1.76 (s)	20.3q	C-13, C-15, C-14	

 Table S6: NMR spectroscopy data (CD₃OD) for compound 6

position	δ _H (mult, <i>J</i> in Hz)	δ _c mult.	HMBC	¹ H- ¹ H COSY
1		171.1s		
2α	2.72 (dd, 12.1, 4.4)	47.04	C-4, C-3, C-1	H-2 <i>β</i> , H-3
2β	2.46 (m)	47.0t	C-4, C-3, C-1	$H-2\alpha$, $H-3$
3	4.52 (m)	72.1d	C-5	H-2 α , H-2 β , H-4
4	5.65 (dd, 14.9, 7.8)	134.7d	C-6	H-3, H-5
5	6.16 (m)	132.8d	C-4, C-3, C-7	H-4, H-6
6	6.18 (m)	131.3d	C-9	H-7, H-5
7	6.17 (m)	134.6d	C-5	H-8, H-6
8	6.10 (m)	133.3d	C-10, C-6, C-7	H-9, H-7
9	6.02 (m)	132.2d	C-8	H-10 <i>α</i> , H-10 <i>β</i> , H-8
10α	2.68 (m)	44 04	C-8	H-10 <i>β</i> , H-11, H-9
10 β	2.33 (dd, 14.6, 10.1)	41.01	C-8, C-11, C-12	H-10α, H-11, H-9
11	3.88 (d, 5.9)	77.0d	C-24, C-12, C-13, C-9	H-12, H-10 <i>α</i> , H-10 <i>β</i>
12	1.72 (m)	39.2d	C-24, C-10, C-11	H-11, H-13, H-24
13	3.97 (d, 10.1)	74.7d	C-24, C-14, C-15, C-11	H-12, H-14
14	1.76 (m)	43.9d	C-25, C-16, C-15	H-25, H-15, H-13
15	3.74 (m)	72.4d	C-25, C-17	H-16α, H-16β
16α	1.59 (m)	22.24	C-17,	H-16β, H-17α, H-17β, H-15
16 β	1.46 (m)	33.31	C-15	H-16α, H-17α, H-17β, H-15
17α	2.82 (m)	00.44	C-16, C-18	H-16 <i>α</i> , H-16 <i>β</i> , H-17 <i>β</i>
17 β	2.45 (m)	33.4t	C-16, C-18	H-16 α , H-16 β , H-17 α
18	. ,	145.7s		
19	6.58 (s)	112.7d	C-17, C-21, C-23, C-20	H-21, H-23
20		140.0s		
21	6.86 (s)	107.0d	C-19, C-20, C-22	H-19, H-23
22		158.6s		
23	6.42 (s)	113.4d	C-17, C-21, C-19, C-22	H-19, H-21
24	1.05 (d, 7.0)	12.1q	C-12, C-13, C-11	H-12
25	0.69 (d, 6.8)	10.6q	C-13, C-15, C-14	H-14

 Table S7: NMR spectroscopy data (CD₃OD) for compound 7

Figure S1. ¹H NMR (600 MHz, CD₃QD) spectrum for compound 1

Figure S2. ¹³C NMR (151 MHz, CD₃OD) spectrum for compound 1

Figure S6. Enlarged HMBC spectrum 2 for compound 1

Figure S7. Enlarged HMBC spectrum 3 for compound 1

Figu	ure S11	1. ¹³ C	NMF	R [151	MHz	:, (CE) ₃) ₂ C	O] spe	ectrur	n for	com	ipou	nd 2				
—171.6669		-138.02/4	138.5313 138.3951 134.7762	131.9360 131.5783 129.1202 127.4683	126.8940	-113.4000 105.3250				~75.0847 ~72.7848 ~70.1530	-63.3700		49.6987	\ 42.8687 38.4115 \ 37.8278 32.9549	28.4700		—11.3081
170	160	150	140	130	120	110	100	90 f1 (ppm)	80	70	6	60	50	40	30	20	10

Figure S16. Enlarged NOESY spectrum for compound 2

Figu	ire S	23. ¹	H NM	R (600) MHz	, CE	D ₃ OD)) spe	dtrum	for	com	ιροι	Ind	4					
~9.0176 8.1440 6.2651	-6.2495 -6.2394 -6.2238	-6.1125 -6.1043 -6.0965	-6.0757 -6.0504 -5.7211 -5.7112	-5.5790 -5.5657 -5.5535	-5.1934 -5.1934 -4.6902	-4.0822 -4.1621 -4.1535	-4.1481 -4.1397 -3.6539	-3.648/ -3.6429 -3.6379	-3.032 -3.6266 -3.3569	-2.9370 -2.8798 -2.8725	-2.8586 -2.8586 -2.8517	-2.8391 -2.8165 - 7056	-2.6887 -2.6887 -2.6847	2.6678 2.4269	2.4140	2.2932 2.2086 2.2935 2.2880	L2.1554	L1.7959 L1.7857 L1.7747	L1.7351 0.8732 0.8617
		·			"			u		•		-							
l		I																	
						1													
												1							
_l J		 &	~/~			h./ h ' \∀ - 05			J VUL L	/ //	~l	עיין ע עיין ע	' ∿∿ ! +	ں ں ∬ ۳4. ∬	۲ ۲ ۲ ۲		یہ` لر ⊱⊮ر 0 0		س ۳ سر
1.0	0.5	0.9				3.4	÷÷;	1.0			· · ·	5 7 7 7 7 7 7	0 0			5.7.3	3.5	· · ·	3.4
9.0	8.5	8.0	1.5	7.0	6.5	6.0	5.5	5.0 f1 (p) 4.9 pm)	o 4	ŧ.U	3.5	ć	3.0	2.5	2.0		1.5	1.0

	անությունը անդադանը անդադանությունը էր երկանությո	hadan kana kana kana kana kana kana kana	nteratel Artean 1. an Novichatri National Indination di Print Contra Contra Contra Contra Contra Contra Contra Artean 1.	alida(Nh i linda),
-171.9972 -154.4946 -154.4946 -146.3289 -146.3289 -146.3289 -146.3289 -136.0493 -135.7549 -133.7350 -133.7350 -132.1238 -128.4964 -128.4964 -128.4964 -128.4964	-114.4434 	72.8120 70.5344 56.7686	₹44.0908 37.4527 33.0237 27.5989 20.5776	— 10.4 <i>1</i> 40

Figure S31. ¹³C NMR (151 MHz, CD₃OD) spectrum for compound 5_{II}

Figure S36. ¹ H NMR (400 MHz, (CD_3OD) spectrum for co	ompound 6
--	----------------------------	-----------

7.0128 7.0079 7.0029 6.4179	-0.3037 -6.3794 -6.1347 -6.1238	6.0996 6.0908 6.0781	L6.0642 L6.0558 L6.0406	-6.0319 L6.0211 L5.7037	-5.6678 -5.6484	-5.4942 -5.2544 -1.5.2423	-5.2340 -5.2218	L4.6277 L4.6124	L4.4877 L4.4778	/3.6489 /3.6398	-2.083/ -2.6729 -2.6537	-2.6430	r2.6289 r2.5092 r2.4835	r2.4792 ∎r2.4593	2.4462	-2.4226 	L2.3883	-2.3252 	L2.2913 L2.2913 L2.2739	L2.0139 L1.8319	1.7576	0.9311
		1																		I		
				Å						Å												1.
In									اسم		ulu)		hanna dha an						have		M	M ,
0.97⊸	1.05 1.05	4.21	2.10⊣ 0.73 ₋	1.05⊣		1.10⊣	1.1			1.10				1.21 v	1.57	1.15 2.36	1.43	1.09 3.32			3.49⊣	<u>.</u>
7.0	6.5	6.0	5.	5	5.0		4.5	f1	4.0 (ppm	ı)	3.5	, –	3.0	1 -	2.5	. –	2.0)	1.5	. –	1.0	

Figure S37. ¹³C NMR (101 MHz, CD₃OD) spectrum for compound <u>6</u>

Figure S42. ¹H NMR (600 MHz, CD₃OD) spectrum for compound **7**

∽6.8565 √6.5811	/6.4152 /6.2112 /6.1867	6.1436 6.1213 6.1138 6.0965	L6.0796 L6.0234 L6.0165 L6.0081 L5.9998	-5.6517 -5.6388 -5.6269 -5.6139 -4.5019	3.9704 3.9536 3.8839 3.8741 3.7414	3.7379 3.7241 3.7241 3.7208 2.8024 2.7814 -2.7814	-2.7206 -2.7135 -2.7006 -2.6931 -2.6775	2.6662 2.6534 2.4601 2.4408 2.4226 2.3311	1.7352	1.7090 1.1.5942 1.1.5808 1.1.5808 1.1.4479 1.4479 1.0485	L1.0369 L0.6858 L0.6745
									1		
	1 1										
		1						ł			
سالي			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		n llen		N Commence				
1.00 -≖	1.08⊣ 1.19⊣	4.69⊣ 1.10⊣	1.10-壬		1.08⊣	1.10 1.09 1.14 1.14 1.14		2.22∄ 1.20∄ 1.14 Љ 1.33 ⊈	3.04 √ 1.59 √	1.64 ∖ 3.74 ⊣	3.36⊣
	6.5	6.0	5.5	5.0	4.5	4.0 3.5 f1 (ppm)	5 3.0	2.5	2.0 1	.5 1.0	0.

Figure S48. High-resolution ESIMS spectrum for compound 1

1_N18_160718170135 #8-16 RT: 0.22-0.44 AV: 9 SB: 2 1.49 , 1.49 NL: 2.31E6

Figure S49. High-resolution ESIMS spectrum for compound 2

Figure S50. High-resolution ESIMS spectrum for compound 3

Figure S51. High-resolution ESIMS spectrum for compound 4

Figure S52. High-resolution ESIMS spectrum for compound 5

5_N33_160718171445 #6-12 RT: 0.17-0.34 AV: 7 SB: 2 1.50 , 1.50 NL: 7.77E5

Figure S53. High-resolution ESIMS spectrum for compound 6

6_N5_160718171847 #6-13 RT:0.17-0.37 AV: 8 SB: 2 1.50 , 1.50 NL: 6.74E5

Figure S54. High-resolution ESIMS spectrum for compound 7

7_N24_16071817164#67-13 RT:0.20-0.37 AV: 7 SB: 2 1.49, 1.49 NL: 1.46E6 T: FTMS + p ESI Full ms [200.00-800.00]

490

Figure S55. Cell viability was quantified by SRB assay at 72 h after treatment with 40 μ M of indicated compounds.

Figure S56. A. HPLC preparation of compounds 1–11. B. Ultroviolet absorption curve of compounds 1–11.

Α.

280.0

320.0

360.0 nm

360.00

nm

200.00

240.00

280.00